

Conversational AI
with Rasa

Build, test, and deploy AI-powered, enterprise-grade
virtual assistants and chatbots

Xiaoquan Kong

Guan Wang

BIRMINGHAM—MUMBAI

Conversational AI with Rasa
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Publishing Product Manager: Devika Battike
Senior Editor: Mohammed Yusuf Imaratwale
Content Development Editor: Nazia Shaikh
Technical Editor: Devanshi Ayare
Copy Editor: Safis Editing
Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing
Indexer: Sejal Dsilva
Production Designer: Joshua Misquitta

First published: October 2021
Production reference: 1260821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-705-7
www.packt.com

http://www.packt.com

To my parents, for their unwavering devotion. To my wife, for her support
behind the scenes. In addition, thanks to Google for providing the Google

Cloud credits to support this work.

– Xiaoquan Kong

To my mom and dad. To my wife and kids. Thank you!

– Guan Wang

Foreword
Conversational AI combines ideas from linguistics, human-computer interaction, artificial
intelligence, and machine learning to develop voice and chat assistants for a near-infinite
set of use cases. Since 2016 there has been a surge in interest in this field, driven by the
widespread adoption of mobile chat applications. The coronavirus pandemic accelerated
this trend, with almost all one-on-one interactions becoming digital.

2016 was also the year Rasa was first released and we saw the first community
contributions come in on GitHub. Open source communities live and die by their users
and contributors, and this is doubly true for Rasa, where our global community builds
assistants in hundreds of human languages. Xiaoquan Kong and Guan Wang have
been leading members of our community for years and I am grateful for their many
contributions. Not least Xiaoquan's efforts to ensure Rasa has robust support for building
assistants in Mandarin. I've been eagerly awaiting the publication of this book.

Conversational AI with Rasa covers precisely the topics required to become proficient
at building real-world applications with Rasa. Aside from covering the fundamentals of
natural language understanding and dialogue management, the book emphasizes the real-
world context of building great products. In the first chapter, you are challenged to think
whether a conversational experience is even the right one to build. The book also covers
the essential process of Conversation-Driven Development, without which many assistants
get built but fail to serve their intended users. Additionally, readers are taught practical
skills like debugging an assistant, writing tests, and deploying an assistant to production.

This book will be of great use for anyone starting out as a Rasa developer, and I'm sure
many existing Rasa developers will discover things they didn't know.

Alan Nichol

Co-founder and CTO, Rasa

Contributors

About the authors
Xiaoquan Kong is a machine learning expert specializing in NLP applications. He has
extensive experience of leading teams to build NLP platforms for several Fortune Global
500 companies. He is a Google Developer Expert in machine learning and has been
actively involved in contributing to TensorFlow for many years. He also has actively
contributed to the development of the Rasa framework since the early stages and became
a Rasa Superhero in 2018. He manages the Rasa Chinese community and has also
participated in the Chinese localization of TensorFlow documents as a technical reviewer.

Guan Wang is currently working on Al applications and research for the insurance
industry. Prior to that, he worked as a machine learning researcher for several industry Al
labs. He was raised and educated in mainland China and lived in Hong Kong for 10 years
before relocating to Singapore in 2020. Guan holds BSc degrees in physics and computer
science from Peking University, and an. MPhil degree in physics from HKUST. Guan is an
active tech blogger and community contributor to open source projects including Rasa,
receiving more than 10,000 stars for his own projects on GitHub.

About the reviewers
Harin Joshi's journey in chabot development started with an internship at ImpactGuru,
India's fourth largest crowdfunding platform. There he developed two chatbots and a
machine learning module. He was awarded Intern of the Month for this. Thereafter,
he associated with the Co-learning Lounge AI community and developed a chatbot as
educational content. Currently, he is working for the QuickGHY start-up as a chatbot
developer.

I would like to thank my parents for always being there no matter what. Moreover, I am very
grateful to have friends, who stood strong when I needed them at different stages of my life.
And lastly, I would thank all the readers of this book: you are definitely going to learn a lot
about Rasa and its functionalities.

Pratik Kotian is an conversational AI engineer with 5 years of experience in building
conversational AI agents and designing products related to conversational design. He is
working as a machine learning engineer (specializing in conversational AI) at Quantiphi,
which is an AI company and recognized Google Partner. He has also worked with Packt
on reviewing The Tensorflow Workshop.

I would like to thank my family and friends, who are always supportive and have always
believed in me and my talents. It's because of them that I am doing well in my career and
helping others to build great conversational bots.

Table of Contents

Preface

Section 1: The Rasa Framework

1
Introduction to Chatbots and the Rasa Framework

Technical requirements 4
What is ML? 4
Supervised learning (SL) 5
Stages of machine learning 7
Performance metrics 7
Overfitting and underfitting 9
Transfer learning (TL) 10

Introduction to Natural
Language Processing (NLP) 10
Evolution of modern NLP 11
Basic tasks of NLP 14

Chatbot basics 16

Is a chatbot really necessary? 16
Introduction to chatbot
architecture 17

Introduction to the Rasa
framework 25
Why Rasa? 25
System architecture 26
Installing Rasa 27
The pipeline of a Rasa project 27
Rasa command line 28
Creating a sample project 29

Summary 30
Further reading 30

2
Natural Language Understanding in Rasa

Technical requirements 32
The format of NLU training
data 32
The intent field – storing NLU
samples 34

The synonym field – storing
synonyms and aliases 35
The lookup field – providing
extra features by using lookup
tables 36

viii Table of Contents

The regex field – providing extra
features by using regular
expressions 37
Using regex and lookup 38

Overview of Rasa NLU
components 38
Language model components 40
Tokenizer components 40
Featurizer components 41
Entity extraction components 42
Intent classifier components 43
Handling frequently asked
questions by using a response
selector 44

Configuring your Rasa NLU
via a pipeline 44
What is a pipeline? 44
Configuring a pipeline 44

The output of Rasa NLU 47
The intent field – the purpose of
the user's utterance 48
The entities field – key parameters
of user's utterance 49
Other possible fields 49

Training and running
Rasa NLU 51
Training our models 51
Testing models from the
command line 52
Starting the Rasa NLU service 53

Practice – building the NLU
part of a medical bot 54
What are the features of our bot? 54
How can we implement our bot
in Rasa? 55

Summary 59

3
Rasa Core

Technical requirements 62
Understanding the
universe of your bot
(domain) 62
Intents and entities 63
Slots 64
All possible actions the bot can
take (actions) 64
All the predefined replies to
users (responses) 64
Configuring sessions 66

Training data for dialogue
management (stories) 67
User messages 68
Bot actions and events 69

Auxiliary features (checkpoints and
OR statements) 70
Data augmentation (creating
longer stories automatically) 72

Reacting to user input
(action) 72
Response actions 72
Form actions 72
Built-in actions 73
Custom actions 73

Understanding the memory
of your bot (slots) 74
The influences of slots on the
conversation 75
Slot types 75

Table of Contents ix

Automatic slot filling 76
Setting initial values for slots 76

Understanding the decision-
maker of your bot (policies) 76
Configuring policies 77
Built-in policies 77
Policy priority 78

Connecting with other
services via endpoints 79
Building custom actions
using Rasa SDK 80
Installing the Rasa SDK package 80
Writing custom actions 80
Tracker objects (tracking the
states of conversations) 81

Event objects (records for
changes in conversations) 82
Running custom actions 83

Using channels to communicate
with instant messaging
software 84
Building a tell-the-time
bot 85
Defining the features that our
bot should provide 85
How can we implement those
features? 87
Training models, serving models,
and making inferences 93

Summary 95

Section 2: Rasa in Action

4
Handling Business Logic

Technical requirements 100
The fallback mechanism
in Rasa 100
Handling fallback in NLU 100
Handling fallback in policy 101

Making intents trigger
actions 101
Triggering actions by using
built-in intents 102
Triggering actions by using
custom intents 102

Using forms to complete
tasks 103
Defining a form 103

Activating a form 104
Executing a form task 105

Practice – building a
weather forecast
chatbot 105
Designing the features of
this bot 105
Implementing the bot step
by step 106
Training models via the
command line 113
Running the dialogue system 113
Extending this project 114

Summary 114

x Table of Contents

5
Working with Response Selector to Handle Chitchat and
FAQs

Technical requirements 116
Defining retrieval intents –
the questions users want
to ask 116
Defining responses – the
answers to the questions 117

Updating the configuration
to use ResponseSelector 118
Learning by doing – building
an FAQ bot 118
What are the features of our bot? 119
How can we implement it? 120

Summary 125

6
Knowledge Base Actions to Handle Question Answering

Technical requirements 128
Why do we need knowledge
base actions? 128
How do you use knowledge
base actions? 129
Creating a knowledge base 130
Creating a custom knowledge base
action 131
Defining NLU data and stories to
perform queries from users 132
How do knowledge base
actions work? 134
How do you customize
knowledge base actions? 137

Modifying ActionQueryKnowledgeBase
to customize the behavior 138
Customizing
InMemoryKnowledgeBase 139
Building your own knowledge
base 140

Learning by doing – building
a knowledge-based music
query chatbot 141
What are the features of our bot? 141
How do we implement the bot? 143
Supporting the Neo4j knowledge
base 152

Summary 155

7
Entity Roles and Groups for Complex Named Entity
Recognition

Technical requirements 158 Why do we need entity roles
and entity groups? 158

Table of Contents xi

Using entity roles to
distinguish semantics
roles in entities of the
same type 159
Using entity groups to
divide entities into groups 160
Configuring Rasa to use
entity roles and groups 161
Updating the entities setting
for roles and groups 161

Updating forms and stories
for roles and groups 161
Components supporting entity
roles and entity groups 163

Learning by doing –
building a ticket and
drink booking bot 163
What are the features of
our bot? 163
How can we implement it? 164

Summary 170

8
Working Principles and Customization of Rasa

Understanding Rasa's
NLU module 172
How does the NLU training
work? 172
How does NLU inference
work? 173

Understanding how
Rasa policies work 175
Converting trackers to training
data 175
How does policy training work? 179

How does policy inference work? 179

Writing Rasa extensions 180
Writing pipeline and policy
extensions 180
Writing custom slot types 182
Writing extensions for other
functionalities 183

Practice – Creating your own
custom English tokenizer 183
Summary 186

Section 3: Best Practices

9
Testing and Production Deployment

Testing Rasa projects 190
Validating data and stories 190
Evaluating the NLU performance 190
Evaluating Dialogue
management performance 194

Deploying your Rasa
assistant to production 196
When to deploy 196
Deployment options 196

xii Table of Contents

Model storage 196
Tracker stores 198
Lock stores 199

High-performance settings for
Rasa servers and action servers 200

Summary 200

10
Conversation-Driven Development and Interactive Learning

Introduction to CDD 202
Introduction to Rasa X 203
Installing Rasa X 203
Using Rasa X 204

Performing interactive
learning 209
Saving the interactive
learning data and exiting 213

Summary 214

11
Debugging, Optimization, and Community Ecosystem

Debugging Rasa systems 216
Wrong prediction of results 216
Code errors 218

Optimizing Rasa systems 224
Understanding the
community ecosystem
of Rasa 226

Data generation tool –
Chatito 226
Data generation tool –
Chatette 227
Data labeling tool –
Doccano 228
Language-specific
libraries 229

Summary 230

Other Books You May Enjoy
Index

Preface
The Rasa framework enables developers to create industrial-strength chatbots using
state-of-the-art natural language processing (NLP) and machine learning technologies
quickly, all in open source.

Conversational AI with Rasa starts by showing you how the two main components at the
heart of Rasa work – Rasa NLU and Rasa Core. You’ll then learn how to build, configure,
train, and serve different types of chatbots from scratch by using the Rasa ecosystem.
As you advance, you’ll use form-based dialogue management, work with the response
selector for chitchat and FAQ-like dialogues, make use of knowledge base actions to
answer questions for dynamic queries, and more. Furthermore, you’ll understand how to
customize the Rasa framework, use conversation-driven development patterns and tools
to develop chatbots, explore what your bot can do, and easily fix any mistakes it makes
by using interactive learning. Finally, you’ll get to grips with deploying the Rasa system
to a production environment with high performance and high scalability and cover best
practices for building an efficient and robust chat system.

By the end of this book, you’ll be able to build and deploy your own chatbots using Rasa,
addressing the common pain points encountered in the chatbot life cycle.

Who this book is for
This book is for NLP professionals and machine learning and deep learning practitioners
who have knowledge of NLP and want to build chatbots with Rasa. Anyone with beginner-
level knowledge of NLP and deep learning will be able to get the most out of the book.

What this book covers
Chapter 1, Introduction to Chatbots and the Rasa Framework, introduces all the
fundamental knowledge pertaining to chatbots and the Rasa framework, including
machine learning, NLP, chatbots, and Rasa Basic.

Chapter 2, Natural Language Understanding in Rasa, covers Rasa NLU’s architecture,
configuration methods, and how to train and infer.

xiv Preface

Chapter 3, Rasa Core, introduces how to implement dialogue management in Rasa.

Chapter 4, Handling Business Logic, explains how Rasa gives developers great flexibility in
handling different business logic. This chapter introduces how we can use these features to
handle complex business logic more elegantly and efficiently.

Chapter 5, Working with Response Selector to Handle Chitchat and FAQs, explains how
to define questions and their corresponding answers and how to configure Rasa to
automatically identify the query and give the corresponding answer.

Chapter 6, Knowledge Base Actions to Handle Question Answering, describes how to create
a knowledge base that will be used to answer questions. You will also learn to customize
knowledge base actions, learn how referential resolution (mapping mention to object)
works, and how to create your own knowledge base.

Chapter 7, Entity Roles and Groups for Complex Named Entity Recognition, explains how
entity roles and entity groups solve the complex NER problem, and how to define training
data, configure pipelines, and write stories for entity roles and entity groups.

Chapter 8, Working Principles and Customization of Rasa, introduces the working
principles behind Rasa and how we can extend and customize Rasa.

Chapter 9, Testing and Production Deployment, explains how to test Rasa applications and
how to deploy Rasa applications in production environments.

Chapter 10, Conversation-Driven Development and Interactive Learning, introduces
conversation-driven development and Rasa X to develop chatbots more effectively. We
will also introduce how to use interactive learning to quickly find and fix problems.

Chapter 11, Debugging, Optimization, and Community Ecosystem, explains how to debug
and optimize Rasa applications. We will also introduce some tools to help developers
build chatbots effectively.

To get the most out of this book
You will need a version of Rasa 2.x installed on your computer—the latest version if
possible. All code examples have been tested using Rasa 2.8.1 on Ubuntu 20.04 LTS.
However, they should work with future version releases, too.

Preface xv

You should install Rasa with the following command: pip install
rasa[transformers]. This command will install the transformers library, which
provides the components we need in the code.

You will also need to install the pyowm Python package to run the code present in Chapter
4, Handling Business Logic. You will also need to install Docker and the neo4j Python
package 4.1 to run the code of the custom knowledge base part in Chapter 6, Knowledge
Base Actions to Handle Question Answering.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book’s GitHub repository (a link is available in the next
section).

The versions of Rasa change quickly, and the related knowledge base and documents are
also rapidly updated. We recommend that you frequently read Rasa’s documentation to
understand the changes.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Conversational-AI-with-RASA. If there’s an
update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801077057_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "The following example demonstrates post-mortem debugging using
the pdb command."

https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801077057_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801077057_ColorImages.pdf

xvi Preface

A block of code is set as follows:

version: "2.0"

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: LanguageModelFeaturizer

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

WebChat.default.init({
 selector: "#webchat",
 initPayload: "Hello",

Any command-line input or output is written as follows:

python -m pdb -c continue <XXX>/rasa/__main__.py train

Bold: Indicates a new term, an important word, or words that you see on screen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Click on
the Cancel button."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata
and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

http://www.packtpub.com/support/errata

Preface xvii

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share your thoughts
Once you've read Conversational AI with Rasa, we'd love to hear your thoughts! Please
https://packt.link/r/1801077053 for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801077053

Section 1:
The Rasa

Framework

In this section, you will learn about the core concepts of machine learning, natural
language processing, dialogue systems, and Rasa. All these foundational concepts will
prepare you for subsequent learning.

This section comprises the following chapters:

• Chapter 1, Introduction to Chatbots and the Rasa Framework

• Chapter 2, Natural Language Understanding in Rasa

• Chapter 3, Rasa Core

1
Introduction to

Chatbots and the
Rasa Framework

In this first chapter, we will introduce chatbots and the Rasa framework. Knowledge of
these is important because they will be used in later chapters. We will split that fundamental
knowledge into four pieces, of which the first three are machine learning (ML), natural
language processing (NLP), and chatbots. This is the theory and concept part of the
fundamentals. With these in place, you will know in theory how to build a chatbot.

The last piece is Rasa basics. We will introduce the key technology of this book: the Rasa
framework and its basic usage.

In particular, we will cover the following topics:

• What is ML?

• Introduction to NLP

• Chatbot basics

• Introduction to the Rasa framework

4 Introduction to Chatbots and the Rasa Framework

Technical requirements
Rasa is a Python-based framework. To install it, you need a Python developer
environment, which can be downloaded from https://python.org/downloads/.
At the time of writing this chapter, Rasa only supports Python 3.6, 3.7, and 3.8, so
please be careful to choose the correct Python version when you set up the developing
environment.

You can find all the code for this chapter in the ch01 directory of the GitHub repository,
at https://github.com/PacktPublishing/Conversational-AI-with-
RASA.

What is ML?
ML and artificial intelligence (AI) have almost become buzzwords in recent years.
Everyone must have heard about AI in the news after AlphaGo from Google beat the best
Go player in the world. There is no doubt that ML is now one of the most popular and
advanced areas of research and applications. So, what exactly is ML?

Let's imagine that we are building an application to automatically recognize rock/paper/
scissors based on video inputs from a camera. The hand gesture from the user will be
recognized by the computer as one of rock/paper/scissors.

Let's look at the differences between ML and traditional programming in solving this
problem.

In traditional programming, the working process usually goes like this:

1. Software development: Product managers and software engineers work together to
understand business requirements and transform them into detailed business rules.
Then, software engineers write the code to transform business rules into computer
programs. This stage is shown as process 1 in the following diagram.

2. Software usage: Computer software transforms users' input to output. This stage is
shown as process 2 in the following diagram:

Figure 1.1 – Traditional programming working pattern

https://python.org/downloads/
https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://github.com/PacktPublishing/Conversational-AI-with-RASA

What is ML? 5

Let's go back to our rock/paper/scissors application. If we use a traditional programming
methodology, it will be very difficult to recognize the position of hands and boundaries
of the fingers, not to mention that even the same gesture can evolve into many different
representations, including the position of the hand, different sizes and shapes of hands
and fingers, different skin colors, and so on. In order to solve all these problems, the
source code will be very cumbersome, the logic will become very complicated, and it will
become almost impossible to maintain and update the solution. In reality, probably no one
can accomplish their target with traditional programming methodology.

On the other hand, in ML, the working process usually follows this pattern:

1. Software development: The ML algorithm infers hidden business rules by learning
from training data and encodes the business rules into models with lots of weight
parameters. Process 1 in the following diagram shows the data flow.

2. Software usage: The model transforms users' input to output. In the following
diagram, process 2 corresponds to this stage:

Figure 1.2 – Programming working pattern driven by ML
There are a few types of ML algorithms: supervised learning (SL), unsupervised
learning (UL), and reinforcement learning (RL). In NLP, the most useful and most
common algorithms belong to SL, so let's focus on this learning algorithm.

Supervised learning (SL)
An SL algorithm builds a mathematical model of a set of data that contains both the inputs
(x) and the expected outputs (y). The algorithm's input data is also known as training data,
composed of a set of training examples. The SL algorithm learns a function or a mapping
from inputs to outputs of training data. Such a function or mapping is called a model. A
model can be used to predict outputs associated with new inputs.

6 Introduction to Chatbots and the Rasa Framework

The algorithm used for our rock/paper/scissors application is an SL algorithm. More
specifically, this is a classification task. Classification is a task that requires algorithms
to learn how to assign (limited) class labels to examples—for example, classifying emails
as "spam" or "non-spam" is a classification task. More specifically, it divides data into two
categories, so it is a binary classification task. The rock/paper/scissors application in this
example divides the picture into three categories, so, to be more specific, it belongs to a
multi-class classification task. The opposite of a classification task is a regression task,
which predicts a continuous quantity output for each example—for example, predicting
future house prices in a certain area is a regression task.

Our application's training data contains the data (the image) and a label (one of rock/
paper/scissors), which are the input and output (I/O) of the SL algorithm. The data
consists of many pictures. As the example in the following screenshot shows, each picture
is simply a big matrix of pixel values for the algorithm to consume, and the label of the
picture is rock or paper or scissors for the hand gesture in the picture:

Figure 1.3 – Data and label

Now we understand what an SL algorithm is, in the next section, we will cover the general
process of ML.

What is ML? 7

Stages of machine learning
There are three basic stages of applying ML algorithms: training, inference, and
evaluation. Let's look at these stages in more detail here:

1. Training stage: The training stage is when the algorithms learn knowledge or
business rules from training data. As shown in process 1 in Figure 1.2, the input of
the training stage is training data, and the output of the training stage is the model.

2. Inference stage: The inference stage is when we use a model to compute the output
label of a new input data. The input of this stage is the new input data without labels,
and the output is the most likely label.

3. Evaluation stage: In a serious application, we always want to know how good
a model is before we use it in production. This is a stage called evaluation. The
evaluation stage will measure the model's performance in various ways and can help
users to compare models.

In the next section, we will introduce how to measure model performance.

Performance metrics
In NLP, most problems can be viewed as classification problems. A key concept in
classification performance is a confusion matrix, on which almost all other performance
metrics are based.

A confusion matrix is a table of the model predictions versus the ground-truth labels.

Let me give you a specific example. Assume we are building a binary classification to
classify whether an image is a cat image or not. When the image is a cat image, we call it
a positive. Remember—we are building an application to detect cats, so a cat image is a
positive result for our system, and if it is not a cat image (in our case, it's a dog image), we
call it a negative. Our test data has 10 images. The real label of test data is listed as follows,
where the cat image represents a cat and the dog image represents a dog:

Figure 1.4 – The real label of test data

The prediction result of our model is shown here:

Figure 1.5 – The prediction result of our model on test data

8 Introduction to Chatbots and the Rasa Framework

The confusion matrix of our case would look like this:

Figure 1.6 – The confusion matrix of our case

In this confusion matrix, there are five cat images, and the model predicts that one of them
is a dog. This is an error, and we call it a false negative (FN) because the model says it is a
negative result, but that is actually incorrect. And in the five dog images, the model predicts
that two of these are cats. This is another error, and we call it a false positive (FP) because
the model says it is a positive result but it's actually incorrect. All correct predictions belong
to one of two cases: cats-to-cats prediction, which we call a true positive (TP), and dogs-to-
dogs prediction, which we call a true negative (TN).

So, the preceding confusion matrix can be viewed as an instance of the following abstract
confusion matrix:

Figure 1.7 – The confusion matrix in abstract terms

Many important performance metrics are derived from a confusion matrix. Here, we will
introduce some of the most important ones, as follows:

• Accuracy (ACC):

𝐴𝐴𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇

What is ML? 9

• Recall:

• Precision:

• F1 score:

Among the preceding metrics, the F1 score is the combined advantage of recall and
precision, so it is the most commonly used metric for now.

In the next section, we will talk about the root cause of poor performance (the
performance metrics being low): overfitting and underfitting.

Overfitting and underfitting
Generally speaking, there are two types of errors found in ML models: overfitting
and underfitting.

When a model performs poorly on the training data, we call it underfitting. Common
reasons that can lead to underfitting include the following:

• The algorithm is too simple. It does not have enough power to capture the
complexity of the training data. For algorithms based on neural networks, there are
too few hidden layers.

• The network architecture or features used for training is not suitable for the
task—for example, models based on bag-of-words (BoW) are not suitable for
complex NLP tasks. In these tasks, the order of words is critical, but a BoW model
completely discards this information.

• Training a model for too few epochs (a full training pass over the entire training
data so that each example has been seen once) or at too low a learning rate (a scalar
used to train a model via gradient descent, which can determine the degree of
weight changes).

• Using a too-high regularization rate (a scale used to indicate the penalty degree on
a model's complexity; the penalty can reduce the power of fitting) to train a model.

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑁𝑁𝑇𝑇

𝐹𝐹1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 2 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝
𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟 × 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝𝑠𝑠𝑝𝑝

10 Introduction to Chatbots and the Rasa Framework

When a model performs very well on the training data but performs poorly on new data
that it has never seen before, we call this overfitting. Overfitting means the algorithm
has the ability to fit the training data well, but it does not generalize well to samples that
are not in the training data. Generalization is the most important key feature of ML. It
means that algorithms learn some key concepts from training data rather than just simply
remembering them. When overfitting happens, it shows that the model is more likely
to remember what it saw in training than learn from it, so it performs very well on the
training data, but since it does not see the new data before and does not learn the concept
well, it thus performs poorly on the new data. ML scientists have already developed
various methods against overfitting, such as adding more training data, regularization,
dropout, and stopping early.

In the next section, we will introduce TL, which is very useful when the training data is
insufficient (this is a common situation).

Transfer learning (TL)
TL is a method where a model can use knowledge from another model for another task.

TL is popular in the chatbot domain. There are many reasons for this, and some of them
are listed here:

• TL needs less training data: In a chatbot domain, there usually is not much
training data. When using a traditional ML method to train a model, it usually
does not perform well due to a lack of training data. With TL, we can achieve much
better performance on the same amount of training data. The less data you have, the
more performance increase you can get.

• TL makes training faster: TL only needs a few training epochs to fine-tune a model
for a new task. Generally, it is much faster than the traditional ML method and
makes the whole development process more efficient.

Now we understand what ML is, in the next section, we will cover the basics of NLP.

Introduction to Natural Language Processing
(NLP)
NLP is a subfield of linguistics and ML, concerned with interactions between computers
and humans via text or speech.

Let's start with a brief history of NLP.

Introduction to Natural Language Processing (NLP) 11

Evolution of modern NLP
Before 2013, there was no unified method for NLP. This was because two problems had
not been solved well.

The first problem relates to how we represent textual information during the
computing process.

Time-series data such as voices can be represented as signals and waves. Image
information gives pixel position and pixel value. However, there were no intuitive ways
to digitalize text. There were some preliminary methods such as one-hot encoding to
represent each word or phrase and use BoW to represent sentences and paragraphs, but it
became quite obvious that this was not the perfect way to deal with this.

After one-hot encoding, the dimension of each vector will be the size of the entire
vocabulary, with all 0 values except one value of 1, to represent the position of that word.
Such sparse vectors waste a lot of space and, in the meantime, give no indication of the
semantic meaning of the word itself—every pair of two different words will always be
orthogonal to each other.

A BoW model simply counts the frequency of each word that appears in the text and
ignores the dependency and order of the words in the context.

The second problem relates to how we can build models for text.

Traditional methods rely heavily on manually engineered features—for example, we use
Term Frequency-Inverse Document Frequency (TF-IDF) to represent the importance
of a word with respect to its frequency in both an article and a whole group of articles.
We use topic modeling to inform us of the document theme and ratio of different themes
for each article with respect to statistical information. We also use lots of linguistic
information to manually engineer features.

Let's take an example from an open source tool called IEPY that is used for relation
extraction. Here is a list of the engineered features of IEPY constructs for its relation
extraction task:

• number_of_tokens

• symbols_in_between

• in_same_sentence

• verbs_count

• verbs_count_in_between

• total_number_of_entities

12 Introduction to Chatbots and the Rasa Framework

• other_entities_in_between

• entity_distance

• entity_order

• bag_of_wordpos_bigrams_in_between

• bag_of_wordpos_in_between

• bag_of_word_bigrams_in_between

• bag_of_pos_in_between

• bag_of_words_in_between

• bag_of_wordpos_bigrams

• bag_of_wordpos

• bag_of_word_bigrams

• bag_of_pos

• bag_of_words

After getting all those features, traditional methods use some traditional ML algorithms
to build models. Let's take IEPY as an example again. It provides the following
classification models:

• Stochastic Gradient Descent (SGD)

• Nearest Neighbors (NN)

• Support Vector Classification (SVC)

• Random Forest (RF)

• Adaptive Boosting (AdaBoost)

Traditional applications of NLP usually practice in a very similar way to that shown
previously to solve real problems. We will see later that Rasa solves the entity recognition
(ER) problem in a similar way. The advantage is that the training process can be really fast,
and it requires less label data to train a working model. However, this also means that we
need to spend a lot of time and effort manually engineering the features and tuning the
models. It also does not work well for more complicated contexts.

In 2013, Tomas Mikolov published two research papers that introduced Continuous BoW
(CBOW) and Skip-gram models. Soon after that, an open source tool called word2vec
was released.

Introduction to Natural Language Processing (NLP) 13

word2vec solves the main issue of our first problem in an elegant way, training itself
through a shallow neural network with a large text corpus. By looking at the context for
each of the words, the algorithm embeds the semantic meaning of each word into a strong
and mysterious dense vector—a so-called word embedding. The vector is strong because
the word embedding embeds the semantic meaning of the word itself so that we can even
do operations such as King - Man + Woman = Queen that were unimaginable before with
one-hot encoding. It is also mysterious because we still do not fully understand what it
means for the value in each dimension of the word embedding.

This basically started a new era for NLP. With word2vec, the first step for NLP is normally
to transform the words into word embeddings. With the help of word embeddings, the
popular deep learning (DL) model in computer vision can also be applied to text. This
is becoming popular and is gradually replacing traditional ML models. This solves our
second question on how to model the texts. With word embeddings trained on a large
corpus, being the input and deep neural networks (DNNs) as the model, this new
pipeline became standard for many NLP tasks.

The invention of word2vec and word embeddings converted the one-hot encoding of
words into vectors that are dense, mysterious, elegant, and expressive. It freed NLP
from complicated and tedious linguistic features and pushed techniques such as DL to
be applied to the NLP domain. This trend of representation learning has gone beyond
NLP and into applications such as knowledge graphs (with graph embeddings) and
recommendation systems (with user embeddings and item embeddings).

Although word2vec significantly improved NLP tasks, researchers soon discovered its
shortcomings: in reality, the same word has different meanings in different contexts
(for example, the word "bank" in "riverbank" and "financial bank" would have different
embeddings), but the vector representation given by word2vec is static regardless of the
context. So, why don't we give an embedding of a word based on the current context? This
new technology is known as contextualized word embeddings. Among the early models
that introduced contextualized word embeddings is the famous Embeddings from
Language Models (ELMo). ELMo does not use fixed embeddings for each word but looks
at the entire sentence before assigning embeddings to each word. It uses a bi-directional
long short-term memory (LSTM) trained on a specific task to create these embeddings.
LSTM is a special recurrent neural network (RNN) that can learn long-term
dependencies (the large distance between the relevant information and the point where it
is needed). It performs well on various problems and has become a core component of the
NLP algorithm based on DL.

14 Introduction to Chatbots and the Rasa Framework

The Transformer (https://arxiv.org/abs/1706.03762) model was released
in 2017, and it performed amazing results on machine translation tasks. Transformer
does not use LSTM in architecture but instead uses a lot of attention mechanisms. An
attention mechanism is a function that maps a query and a set of key-value pairs to an
output. The output is computed as a weighted sum of the values, where the weight of each
value is computed by a function of the query and the corresponding key of the value.
Some NLP researchers believe that the attention mechanism used in Transformer is a
better alternative to LSTM. They believe that the attention mechanism handles long-term
dependencies better than LSTM and has very promising and broad application prospects.
Transformer adopts an encoder-decoder structure in the architecture. The encoder and
decoder are highly similar in structure but not the same in their function. The encoder
is composed of a stack of N identical encoder layers. The decoder is also composed of a
stack of N identical decoder layers. Both the encoder layer and the decoder layer use the
attention mechanism as the core component.

The great success of Transformer has attracted the interest of many NLP scientists. They
have developed more excellent models based on Transformer. Among these models,
two are very famous and important: Generative Pre-trained Transformer (GPT)
and Bidirectional Encoder Representations from Transformers (BERT). GPT is
entirely composed of Transformer's decoder layer, while BERT is entirely composed
of Transformer's encoder layer. The goal of GPT is to produce human-like text. So far,
GPT has developed three versions—namely, GPT-1, GPT-2, and GPT-3. The quality
of the text generated by GPT-3 is very high—very close to a human level. The goal of
BERT is to provide a better language representation to help a wide range of downstream
tasks (sentence-pair classification tasks, single-sentence classification tasks, question-
answering (QA) tasks, single-sentence tagging tasks) achieve better results. That year,
the BERT model achieved state of the art on various NLP tasks and greatly improved the
existing industry's best record on many tasks. Now, BERT has derived a large family tree,
among which the more well-known ones are XLNet, RoBERTa, ALBERT, ELECTRA,
ERNIE, BERT-WWM, and DistilBERT.

We have now learned the evolution process of modern NLP. In the next section, we will
discuss the different types of tasks in NLP.

Basic tasks of NLP
The highly efficient embedding representations of words, phrases, and sentences reduce
the heavy workload on feature engineering and open the door for a series of downstream
NLP applications.

https://arxiv.org/abs/1706.03762

Introduction to Natural Language Processing (NLP) 15

If we consider texts as sequences and different kinds of labels as categories, then the
basic tasks of NLP can be categorized into the following groups with regard to the I/O
data structures:

• From categories to sequences: Examples include text generation and picture-
caption generation.

• From sequences to categories: Examples include text classification, sentiment
analysis, and relation extraction. If the goal of text classification is to classify text
according to the intent of the text, this is an intent classification task. An intent
classification task is one of two important parts of natural language understanding
(NLU), which will be introduced in the next section. The common sequences-
to-categories algorithms include TextCNN, TextRNN, Transformers, and their
variants. Although different algorithms have different structures, in general, a
sequences-to-categories algorithm extracts the semantics of the sequence (the text)
into a vector and then classifies the vector into categories.

• Synchronous sequence to sequence (Seq2Seq): Examples include tokenization,
part-of-speech (POS) tagging, semantic role labeling, and named ER (NER). NER
is another important part of NLU besides intention classification. The common
synchronous Seq2Seq algorithms include Conditional Random Fields (CRF),
Bidirectional LSTM (BiLSTM)-CRF, Transformers, and their variants. Although
the various algorithms work differently, the most common and classic algorithms
in production are based on sequence annotation—that is, each element in the
sequence is classified one by one, and finally, the classification results of all elements
are combined into another sequence.

• Asynchronous Seq2Seq: Examples include machine translation, automatic
summarization, and keyboard input methods.

We will see that in building chatbots, the intention-recognition task is a sequence-to-
category task, while ER is a synchronous Seq2Seq task. Automatic speech recognition
(ASR) can be generally considered as a synchronous sequence (voice signals) to
sequence (text) task, and so is Text to Speech (TTS), but from text-to-voice signals.
Dialogue management (DM) can be generally considered as an asynchronous sequence
(conversation history) to category (next action) task.

Let's talk more about chatbots.

16 Introduction to Chatbots and the Rasa Framework

Chatbot basics
A chatbot is a software system that is used to have a conversation with people via text or
speech. Chatbots are used for various purposes, including customer service, enterprise
operations, and healthcare. According to the different goals, chatbots have two main
types: task-oriented bots and chitchat bots. Task-oriented bots have the goal of finishing
specific tasks by interacting with people, such as booking a flight ticket for someone, while
chitchat bots are more like human beings—their goal is to respond to users' messages
smoothly, just as with chitchat between people.

A chatbot is a diamond in the crown for NLP. The application of a chatbot is challenging,
and we typically do not find the same patterns being used everywhere, from both
technology and business perspectives. Here, we try to clear the fog and introduce some
common processes for developing task-oriented chatbots focusing on vertical domains.
Open-domain chitchat chatbots are also very important and interesting, but they are not
within the scope of this book.

In the next section, we will discuss the advantages of chatbots in the business domain.

Is a chatbot really necessary?
Before we deep dive into the technology, we should ask ourselves the following question
after looking at client requirements: do we really need a chatbot?

If you go to McDonald's, you have probably seen the automatic order system. It has a big
touchscreen with some big buttons and pictures. It supports multiple ways of payment
and requires customers to go through only a few intuitive steps to buy the food they
want. Nowadays, in many McDonald's outlets, we only have one or two employees at the
counter that deal with customers using cash payments, and most of the customers are
already quite used to the automatic order system.

This is an example of a user interface (UI) requirement that deals with single and clear
customer goals and with a few intuitive steps. Similar kinds of examples are purchasing
movie tickets, booking train or plane tickets, booking hotel rooms, and buying coffee
or food. Although many of these are used especially in academic research as chatbot
examples, we have to understand that a chatbot may not be the best choice compared to a
big touchscreen and buttons with pictures.

The UI scenarios in which a chatbot has a certain advantage are listed here:

• Customer service in vertical domains where customers generate a large number of
similar questions and requirements. Goals are clear or semi-clear, and customers
potentially need help and guidance to understand their own needs.

Chatbot basics 17

• Customer service (chatbot) owns domain expert knowledge (for example,
knowledge graph) and strong experience in answering questions (historical
customer service conversational data) and can solve customer problems
within minutes.

• If the chatbot cannot eventually solve the customer's problem, it should collect
as much information as possible and switch to manual customer service with all
that information.

In many scenarios, the 10 most frequently asked questions can already solve a majority
of the general problems customers have. The advantage of using a chatbot is that it can
automatically retrieve customer profiles, read instantly from a large volume of knowledge
bases, perform multiple rounds of conversations, and quickly give personalized solutions
according to user needs.

Some example scenarios in which a chatbot may have an advantage are listed here:

• Hospital reception or medical consulting

• Online shopping customer service

• After-sales service

• Investment consulting

• Bank services

We have already seen many chatbot applications in the preceding scenarios. However,
there is still a long way to go for chatbot applications to work in real life.

In the next section, we will learn about the theoretical principles of chatbots.

Introduction to chatbot architecture
In the early days, chatbots were mainly based on templates and rules. An example is AI
Markup Language (AIML). AIML is quite powerful. It can extract important information
by rules from users' questions, and it can run scripts to get information through an
external application programming interface (API) to enrich the answers. There is a
chatbot called Artificial Linguistic Internet Computer Entity (Alicebot) that is based on
AIML, and it contains more than 40,000 different kinds of data, which literally constructs
a huge rule-based knowledge base.

18 Introduction to Chatbots and the Rasa Framework

An advantage of using rules is that we can achieve high precision. However, there is also
an obvious disadvantage: there can be many alternative formats of the same questions, and
the best rules will only be able to cover part of them. Take an example of a weather bot—a
user can have hundreds of ways of asking about the weather. Also, it becomes very difficult
to maintain it once we have more and more rules written in the system. Very easily, there
can be contradicting rules, and many times, a change in business logic means we need to
rewrite a good part of all the rules.

Another way to build a chatbot is to have a huge QA database. When a user question
comes in, the system calculates the similarity between that question and all the questions
in the database, chooses the most similar one, and gives the corresponding answer. There
are many similar tasks in the competitions held by Zhihu and Quora. Those websites do
not want users to raise many duplicated questions, so they will match the new questions to
existing questions and alert users if there is a high chance of duplication. Techniques such
as skip-thought that calculate sentence embeddings were invented to tackle this sentence-
similarity problem.

Recently, the mainstream process for building a chatbot has become unified. It mainly
consists of five different modules to build a chatbot, outlined as follows:

• ASR to convert user speech into text

• NLU to interpret user input

• DM to take decisions on the next action with respect to the current dialogue status

• Natural-language generation (NLG) to generate text-based responses to the user

• TTS to convert text output into voice

In this book, we mainly focus on NLU and DM.

Here, we briefly introduce each of the modules.

Automatic Speech Recognition (ASR)
ASR converts human speech into corresponding text. There are many open source and
commercial solutions for ASR, but we are not covering them in this book.

Chatbot basics 19

Natural Language Understanding (NLU)
NLU interprets text-based user input. It recognizes the intent and the relevant entities
from a user's input. The NLU module mainly classifies a user's question at the sentence
level and gets the user's clear intent by intent classification. The NLU module also
recognizes the key entities in the word level from a user's question and performs slot
filling. For multi-domain dialogue systems, there is an additional task before the intent
classification and NER—that is, domain classification. Domain classification is used to
predict the domain (topic) users want to talk about—for example, is that user talking
about the music domain ("Play Michael Jackson's Billie Jean"), the navigation domain
("Navigate to Carrefour"), or the radio domain ("Turn on radio 106.6 FM")? Of course, this
domain classification is unnecessary for single-domain dialogue systems that are focused
on only one domain. Since the Rasa framework is designed for single-domain dialogue
systems, it does not include the domain classification feature. In this book, we will focus
on how to implement a single-domain dialogue system by using Rasa.

Here is a simple example for intent classification and NER. A user inputs I want
to eat pizza. The NLU module can quickly recognize that the user's intent is
Restaurant Search and the key entity is pizza. With intent and key entities, it
helps the following DM module to make queries in the backend database to extract target
information or continue more rounds of conversation to fill in the other missing slots to
complete the question.

From an NLP and ML point of view, intent recognition is a typical text classification task,
and slot filling is a typical ER task.

Both tasks need label data. Here is an example of the labels. It consists of intents such
as greet, affirm, restaurant_search, and medical. Within the intent of
restaurant_search, it also contains a food type of entity. Within the intent of
medical, it also contains a disease type of entity. In reality, we will need way more
label data to be able to train a working model.

Here are some training data samples used by the Rasa framework (we will introduce this
in the next section). The data format clearly shows that it contains text and labels:

{

 "common_examples": [{

 "text": "Hello",

 "intent": "greet",

 "entities": []

 },

20 Introduction to Chatbots and the Rasa Framework

 {

 "text": "Good Morning",

 "intent": "greet",

 "entities": []

 },

 {

 "text": "Where can I find a place for ramen?",

 "intent": "restaurant_search",

 "entities": [{

 "start": 7,

 "end": 8,

 "value": "ramen",

 "entity": "food"

 }]

 },

 {

 "text": "I'm having a fever. What medicine should I
take?",

 "intent": "medical",

 "entities": [{

 "start": 3,

 "end": 4,

 "value": "fever",

 "entity": "disease"

 }]

 }

]

 }

Chatbot basics 21

At a first glance, this seems very similar to the rule-based AIML data. In fact, we are using
that label data to train a much more complicated ML model. This model will be able to
generalize way more scenarios compared to a rule-based system—for example, we give
pizza and ramen as examples of food. When the user inputs cake and salad, a good
NLU system should be able to label them as food entities as well.

The user input text will need to go through NLP preprocessing, such as sentence split,
tokenization, POS labeling, and so on. For certain applications, it is also important to
do coreference resolution to replace the original pronouns with complete names to
reduce ambiguation.

Then, we need to do feature engineering and model training. Traditionally, there can
be many manually engineered features such as number_of_tokens, symbols_
in_between, and bag_of_words_in_between. Then, we perform traditional
ML classification algorithms such as linear classification or support-vector machines
(SVMs) to do intent classification, and traditional sequential labeling models such as a
hidden Markov model (HMM) and CRF to do ER. On the other hand, we can also use
word2vec to do UL on a large corpus to embed hidden features of words into word
embeddings and input them into DNN models such as convolutional neural networks
(CNNs) or RNNs to do intent classification and ER.

22 Introduction to Chatbots and the Rasa Framework

By training a model, we can achieve higher recall so that the system can cover more
different kinds of user input. We can also make use of the rule-based modules we
mentioned before to generate new features from those high-precision rules, to help us
train a better ML model. The whole architecture is illustrated in the following diagram:

Figure 1.8 – A complex NLU system

Later, we will see how Rasa works in its NLU module to implement NLP in an efficient
and open style.

Chatbot basics 23

Dialogue Management (DM)
DM decides the current action of a user according to previous conversations. DM is
the control center for the process of human-machine conversation and is particularly
important for multi-turn task-oriented dialogue systems. The main task of the DM
module is to coordinate and manage the whole conversation flow. By analyzing and
maintaining the context, the DM module decides if a user's intent is clear enough and
information in the entity slots is good enough to start database queries or perform
corresponding actions.

When the DM module thinks the information from user input is not complete or too
ambiguous, it will start managing a multi-turn conversation context and keep prompting
the user to get more information or provide the user with possible items to choose from.
DM is responsible for storing and maintaining the current conversation status, the user's
action history, the system's action history, and potential results from the knowledge base.
When DM decides that it has clearly got all the information needed, it then converts the
user's request into a corresponding query into the database (for example, a knowledge
graph) to search for the right information or act to complete the task (for example,
checking out for shopping, calling a friend's number with Siri, or pulling up a curtain
with smart home devices).

The following diagram shows the workflow and functions of DM:

Figure 1.9 – DM in the dialogue system

24 Introduction to Chatbots and the Rasa Framework

In real-life use cases, DM is responsible for many small tasks and is highly customized
according to product requirements. Many implementations of DM use a rule-based
system, and it's not an easy task to either code or maintain it. In recent work, including
Rasa, people have started to model the DM status into a sequential labeling SL task.
Some advanced work makes use of deep RL, where a user-simulation module is added.
We will see later how Rasa implements the DM module in an easy and elegant way with
Rasa Core.

Natural Language Generation (NLG)
NLG converts the agent's response into human-readable text. There are mainly two
ways of doing this: template-based methods or DL-based methods. The template-based
methods create simple responses without too much flexibility. However, as templates are
designed by humans, they generally have great readability for humans. DL-based methods
can generate flexible and personalized responses. However, as it is automatically generated
by DNNs, it is difficult to control the quality and stability of the results. In real situations,
people tend to use the template-based method and add new functionalities (for example,
choose randomly from a pool of templates) to add more flexibility.

NLG is almost the last challenging mile in human-machine interaction. For a chitchat
bot, we normally apply a Seq2Seq generative model to a large volume of corpus and
directly generate a response to the user's input. However, this does not normally work for
a customer service chatbot that is task-oriented and only for a vertical domain. Users need
accurate and concise responses to their inquiries. We are still working toward one day
where we have lots of data to train a working model that generates texts that almost come
from a real human being—perhaps models such as GPT3 already achieve this.

Still, most of the current NLG modules use rule-based templates. This is like the reverse
operation for slot filling, to fill results into a template and generate a response to users.
More advanced works also use DL to automatically generate templates with slots based on
training data.

There are also some works that try to use DL to train an end-to-end (E2E) task-oriented
chatbot. Some researchers tried to convert each of the NLU, DM, and NLG modules
into DL modules. Some also add a user simulation to train an E2E RL model. Another
important piece of academic research work is on memory networks. A memory network
is similar to Seq2Seq and encodes the entire knowledge base into a complicated DNN
and then combines this with encoded questions to decode to a target answer. This work
was applied to machine reading tasks such as the Stanford Question Answering Dataset
(SQuAD) competition from Stanford University and got some great results. As for task-
oriented chatbots, this is still pioneering work and needs to be tested.

Introduction to the Rasa framework 25

Text to Speech (TTS)
TTS converts normal language text into speech. TTS has been developed over many years,
and there are mature solutions in the industry that are production-ready. In real-life use
cases, as with ASR, we tend to use the TTS engine or service provided by professional
vendors. We will not cover TTS in this book.

So far, we have learned a lot of necessary knowledge about chatbots. It's now time to
do something real. In the next chapter, we will introduce basic knowledge of the Rasa
framework, which is a conversational AI framework for real production.

Introduction to the Rasa framework
Rasa is an open source ML framework to construct chatbots and intelligent assistants.
Rasa's modular and flexible design enables developers to easily build new extensions and
functionalities. Rasa covers almost all the functions needed for building a conversation
system and is currently the mainstream open source conversational system framework.

The Rasa framework consists of mainly four parts, outlined as follows:

• NLU: Extract user's intent and key context information

• Core: Choose the best response and action according to dialogue history

• Channel and action: Connect chatbot to users and backend services

• Helper functions such as Tracker Store, Lock Store, and Event Broker

Why Rasa?
There are many options for building chatbots. These solutions can be divided into two
types: closed source solutions and open source solutions. Closed source solutions have
disadvantages of high cost, vendor lock-in, risk of data leakage, and the inability to
implement custom functions. Open source solutions do not have these problems. A
disadvantage of open source solutions is that users need to carefully choose a good chatbot
framework: this should have large-scale concurrency and powerful functions, be easy to
learn, and have an active community. Rasa has all these features: built-in enterprise-grade
concurrency capabilities, rich functions covering all the needs of chatbots, rich documents
and tutorials, and a huge global community. This is why the Rasa framework ranks first
in the number of stars on GitHub among all chatbot frameworks. Many companies have
successfully built their own chatbots using Rasa.

26 Introduction to Chatbots and the Rasa Framework

Are you curious about how these powerful features of the Rasa framework are
implemented? In the next chapter, we will introduce the architecture of Rasa.

System architecture
Rasa contains two main parts—namely, Rasa and the Rasa software development kit
(Rasa SDK). Within Rasa, there are also NLU and Core.

Rasa NLU converts a user's input into intents and entities. This is known as NLU.

Rasa Core decides the next action based on current and history dialogue records
(including outputs from Rasa NLU). Such actions can be replying to a particular message
from a user or calling some Action class that is customized to the user.

Rasa offers Rasa SDK to help developers build their customized actions. Most bots call
some kind of external service to accomplish a task—for example, a weather bot will
call the API provided by the weather information service to get the current weather
information, while a food-booking bot will call external services to make payments and
food bookings. In Rasa, this kind of action that depends on business contexts is called
a customized action. A customized action runs in an individual server process, so it is
also called Action Server. The Action Server communicates with Rasa Core through
HyperText Transfer Protocol (HTTP).

A complete chatbot also needs a friendly UI. Rasa supports many popular instant
messaging (IM) applications and connects to them through Rasa channels.

The core working process for Rasa is represented in the following diagram:

Figure 1.10 – Core working process of Rasa

Introduction to the Rasa framework 27

The software architecture of Rasa is carefully designed to follow the theory of Conway's
law—organizations design systems that mirror their communication structure. Rasa NLU
and Rasa Core work closely together and are organized into one package called Rasa. Rasa
SDK is another individual software package. The reason behind this design is that Rasa NLU
and Rasa Core are normally developed by the algorithm team, while Customized Actions
are developed by the Python engineering team. Those two teams can be decoupled and
developed, deployed, and improved independently to improve working efficiency.

Installing Rasa
Before we jump into how to actually install Rasa through the command line, let's talk
about virtual environments in Python. What is a virtual environment and why do we talk
about it? In most cases, Python applications—especially large applications—need to use
third-party packages. Since different Python applications may require different versions
of the same third-party package, this means that a Python installation cannot meet the
requirements of each application. Python's official solution for this is to create a virtual
environment for each Python application. A virtual environment is a directory containing
a complete Python installation, in which users can install any third-party package without
any impact outside the directory. This means that the virtual environment and the system
environment and other virtual environments are completely isolated, and they will not
affect each other at all.

Although this step is optional in technical but isolating Python projects, using virtual
environments has already become the de facto standard in the Python world, so please
remember to always create a virtual environment for your Python project. Tools such
as the venv module of the Python standard library (https://docs.python.
org/3.7/tutorial/venv.html), virtualenv (https://virtualenv.pypa.
io/en/latest/), and virtualenvwrapper (https://virtualenvwrapper.
readthedocs.io/en/latest/) can help you create a virtual environment easily.

After we create and activate our virtual environment, it is very easy to install Rasa. Simply
run the following pip command in the command line:

pip install rasa

The pipeline of a Rasa project
Here are the steps to build a complete Rasa project:

1. Project initialization.
2. Prepare NLU training data.

https://docs.python.org/3.7/tutorial/venv.html
https://docs.python.org/3.7/tutorial/venv.html
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/

28 Introduction to Chatbots and the Rasa Framework

3. Configure the NLU model.
4. Prepare the story data.
5. Define the domain.
6. Configure the core model.
7. Train the model.
8. Test the chatbot.
9. Let real customers use the chatbot.

We will introduce the NLU part of the pipeline in Chapter 2, Natural Language
Understanding in Rasa, and the story part in Chapter 3, Rasa Core, and the test part in
Chapter 9, Testing and Production Deployment.

Rasa command line
Some common Rasa commands are shown in the following table:

Figure 1.11 – Rasa commands

Introduction to the Rasa framework 29

Creating a sample project
After successful installation of Rasa, the user can start to use Rasa's built-in tools to create
a sample project by running the following command:

rasa init

The Rasa init tool will ask about the project path (by default, this is the current path)
and whether to train the model immediately after project creation (by default, this is Yes,
but developers can choose No and run rasa train later to train models themselves).

After the successful creation of a sample project, the following files are created:

.

 ├── actions

│ ├── actions.py

│ └── __init__.py

├── config.yml

├── credentials.yml

├── data

│ ├── nlu.yml

│ ├── rules.yml

│ └── stories.yml

├── domain.yml

├── endpoints.yml

└── tests

 └── test_stories.yml

Congratulations! You have just created your first Rasa project. Although we haven't
introduced the Rasa framework in detail, the data and configuration of the sample Rasa
project are all ready, so we can start this bot as a playground. After the model training is
complete (you can do this when you create a project or use the rasa train command
for training), we can use the following command in the terminal to start the interactive
client of Rasa:

rasa shell

You can interact with the bot through the keyboard. Here is an example of this:

Your input -> Hello

Hey! How are you?

30 Introduction to Chatbots and the Rasa Framework

Your input -> I am fine

Great, carry on!

In the following chapters, we will cover all the key files in the sample project and
introduce from scratch all the parts and functions of Rasa.

Summary
In this chapter, we have introduced fundamental knowledge of chatbots and the
Rasa framework, we have shown how to build a chatbot in theory, and we had a brief
introduction to the Rasa framework: its architecture, work pipeline, and CLI.

In the next chapter, we will dive into the NLU part of the Rasa framework.

Further reading
For more information on the topics covered in this chapter, please refer to the
following links:

• Python Machine Learning - Third Edition: https://www.packtpub.
com/product/python-machine-learning-third-
edition/9781789955750

• Python Natural Language Processing Cookbook: https://www.packtpub.
com/product/python-natural-language-processing-
cookbook/9781838987312

• Developer portal of Rasa: https://rasa.com/docs/

https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750
https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750
https://www.packtpub.com/product/python-machine-learning-third-edition/9781789955750
https://www.packtpub.com/product/python-natural-language-processing-cookbook/9781838987312
https://www.packtpub.com/product/python-natural-language-processing-cookbook/9781838987312
https://www.packtpub.com/product/python-natural-language-processing-cookbook/9781838987312
https://rasa.com/docs/

2
Natural Language

Understanding
in Rasa

In this chapter, we introduce how to implement Natural Language Understanding
(NLU) in Rasa.

Rasa NLU is responsible for intent recognition and entity extraction. For example, if the
user input is What's the weather like tomorrow in New York?, Rasa NLU needs to extract
that the intent of the user is asking for weather, and the corresponding entity names and
type, for example, the date is tomorrow, and the location is New York.

Rasa NLU uses supervised learning algorithms to fulfill this function. A proper number of
examples including intent and entity information are needed for training the NLU model.
Rasa NLU has a very flexible software architecture design and supports various kinds of
algorithms. The implementations of those algorithms are called components. Components
also need to be carefully configured and maintain a correct dependency relationship
between their upstream and downstream components. Rasa NLU introduces pipelines as
the component configuration system to achieve this.

32 Natural Language Understanding in Rasa

You can learn Rasa NLU's architecture, configuration methods, and how to train and
inference through this chapter. Finally, you will check and deepen your understanding of
this knowledge through the practice project.

We will introduce the core elements of Rasa NLU one by one. In particular, we will cover
the following topics:

• The format of NLU training data

• Rasa NLU components

• Configuring your Rasa NLU via a pipeline

• The output of Rasa NLU

• Training and serving Rasa NLU

• Practice – building the NLU part of a medical bot

Technical requirements
You can find all the files for this chapter in the ch02 directory of the GitHub repository at
https://github.com/PacktPublishing/Conversational-AI-with-RASA.

The format of NLU training data
In the previous chapter, we created an example project by using a command-line tool of
Rasa. The project layout is as follows:

.

├── actions

│ ├── actions.py

│ └── __init__.py

├── config.yml

├── credentials.yml

├── data

│ ├── nlu.yml

│ ├── rules.yml

│ └── stories.yml

├── domain.yml

├── endpoints.yml

└── tests

 └── test_stories.yml

https://github.com/PacktPublishing/Conversational-AI-with-RASA

The format of NLU training data 33

The data/nlu.yml file in the project acts as the training data file for Rasa NLU. The
training data file is written in YAML (short for YAML Ain't Markup Language) format.
YAML is a general format for data storage and exchange. It is human-readable and
supports a wide range of programming languages.

Before we dive deeper into the specification of training data, here, let me show you a small
sample. It will help you grasp the basic concept of what training data is, and make it easier
to understand our follow-up explanation. The content of the sample (the data/nlu.yml
file) is as follows:

version: "2.0"

nlu:

 - intent: intent_name_one

 examples: |

 - This is a sentence that acts as a training example.

 - hello

 - hi

 - intent: intent_name_two

 examples: |

 - This is just another training sample.

 - good night

 - bye

 - intent: intent_name_N

 examples: |

 - yes

 - indeed

 - of course

The training data of Rasa NLU is in a list with a key called nlu. In that list, each element is
a dictionary, and the functionalities of different dictionaries are defined by specific keys in
the dictionary. The specific keys are intent, synonym, regex, and lookup. The intent
is mandatory, while the other three keys are optional and thus not in official examples.

Now we will introduce each part in detail. Let's start with the intent field.

34 Natural Language Understanding in Rasa

The intent field – storing NLU samples
A key of intent indicates that the current object is for storing the training samples. The
corresponding value of intent is the intent name. Please note that any characters
(including Unicode characters) can be used in the intent name, but the / character should
not be included, because Rasa has reserved this character and it has a special meaning,
which we will introduce later in Chapter 5, Working with Response Selector to Handle
Chitchat and FAQs. In the training sample object, there is a list named examples. Each
list contains a training sample.

The following is an example of the training sample:

- intent: greet

 examples: |

 - hey

 - hello

 - hi

 - hello there

 - good morning

 - good evening

 - morning

 - hey there

 - let's go

 - hey dude

 - good morning

 - good evening

 - good afternoon

The normal character within the training data can be directly written down as the
character itself. Entities are written as the Markdown URL expression, namely [entity
value] (entity type). Entity value is within [and], followed by entity type
within (and).

For example, What's the weather like [tomorrow](date) in [New
York] (city)?

Here, tomorrow (entity value) is date (entity type), and New York (entity value) is
city (entity type).

The format of NLU training data 35

Rasa adds an extra syntax for more complicated labels: [entity value]{"key":
"value", ...}. Here, {"key": "value", ...} is a valid JSON dictionary. Under
this labeling syntax, [entity value](entity type) is just the simplified version of
[entity value]{"entity": "entity type"}. The valid keys also include rule,
group, and value. The rule and group keys correspond to labels in entities' roles and
groups. The value key is used to label the synonyms of the current entity value.

For example, What's the weather like [tomorrow]{"entity": "date"}
in [New York]{"entity": "city", "value": "New York City"}?

In the next section, we will talk about the synonym field.

The synonym field – storing synonyms and aliases
The key for synonym indicates that the object is for storing synonym information. For
example, bike is a synonym of bicycle.

This feature is used during the inference step when the EntitySynonymMapper
component is activated (we will cover it later) to replace the synonym of the entity value
with its standard word.

Here is a complete example of synonym configuration:

nlu:

 - synonym: bike

 examples: |

 - bicycle

 - mountain bike

 - road bike

 - folding bike

This configuration tells Rasa that if the extracted entity value is bicycle, mountain
bike, road bike, or folding bike, it will be replaced by the standard word bike.
This feature will only modify the entity value and will not change the entity type.

Note that synonym is used to standardize the entity values after entities are recognized by
the NLU algorithm. Synonym configuration will not improve the entity extraction, but
only help the following component on the actions by standardizing the entity value.

Next, we will introduce the lookup field.

36 Natural Language Understanding in Rasa

The lookup field – providing extra features by using
lookup tables
The lookup key indicates that the object is for storing lookup tables. If users can be
provided with extra features, the performance of components for intent recognition and
entity extraction can be improved. One of the ways to provide extra features is to give a
keyword dictionary. This keyword dictionary is the lookup table.

Here is an example of lookup (a small cities list):

nlu:

 - lookup: city

 examples: |

 - New York

 - Chicago

 - San Francisco

 - Huston

When the data in this keyword dictionary matches the text, the lookup table will set the
key value to be 1 in the corresponding position and 0 on the unmatched positions, as
follows:

Figure 2.1 – An example of how a lookup table works

As shown in Figure 2.1, if there are New York and San Francisco in the list of cities,
the sentence Book a flight from New York to San Francisco will have the table lookup
feature [0 0 0 0 1 1 0 1 1]. Legal city names can be exhaustively listed, so they
can be made into a lookup table. With the support of lookup table features, the model has
more knowledge to make predictions. The model will focus on the words and sentences
marked by these lookup features. Therefore, even if there are city names that do not
appear in the training data during inference, the model still has the ability to correctly
extract the city names with the help of the lookup features.

In the next section, we talk about the regex field, which has a similar function.

The format of NLU training data 37

The regex field – providing extra features by using
regular expressions
The regex key indicates that the object is for storing regular expressions. Regular
expressions are used to match certain patterns and generate pattern match results as
a new feature for the entity extraction or intent recognition components to improve
performance.

In Rasa, regular expressions use Python regular expressions as the backend engine. You
can use it in the training data file as follows:

nlu:

 - regex: help

 examples: |

 - \bhelp\b

There are many advantages of using regular expressions. For example, if we use a normal
entity extraction component to look for entities such as personal security numbers,
telephone numbers, and IP addresses, it is difficult to get good accuracy. However, by using
regular expressions, we can easily design the patterns to match those entity formats. The
regular expression is especially efficient and powerful when there are certain patterns in
the target entities.

Now let's see how regular expressions work in Rasa:

Figure 2.2 – An example of how regular expressions work

The text in Figure 2.2 contains a zip code. In the case of using the default features, it is
difficult for the Named Entity Recognition (NER) component to correctly extract the zip
code. For people, it is an easy task because there is an obvious pattern: five digits. The
regular expression can be expressed as \d{5}, and the token feature that matches the zip
code is 1. Otherwise, it is 0.

Now that we have learned how to use lookup and regex, in the next section, we will
summarize the usage of these two features.

38 Natural Language Understanding in Rasa

Using regex and lookup
There are normally two ways of using regex and lookup in Rasa:

• As part of the features for the entity extraction component:

A good entity extraction component should be able to make use of the information
we provide to it and discover patterns from the features. Note that the features
we provide are only to recommend to the model that, for example, there may be
a telephone number here, but we are not certain. This is possible because there
may be a coincidence that the same number we think is a telephone number may
also appear in someone's personal security number. The model needs to check the
context to decide whether it should take our recommendation or not. A regular
expression is only to help models get more supporting features. Developers still
need to generate the training samples for intents and entities.

In order to have the model be able to learn the correlation between lookup table
features and target predictions, developers should make sure that in the training
data, there are patterns that come from the lookup table. If there are no patterns at
all from the lookup table, the model will not be able to find the correlation between
the prediction target and regex or lookup table. Developers also should make sure
that there is no error or noise in the lookup table data. Otherwise, if model relies
heavily on regex or lookup table features, the performance will decrease.

• As an entity extraction component:

The RegexEntityExtractor component in Rasa can extract entities with
regex and lookup data. This is totally rule-based but can be efficient in certain
use cases.

Now that we have learned how to define the training data, in the next section, we will
introduce components that consume that training data.

Overview of Rasa NLU components
Rasa NLU is a pipeline-based general framework. This gives Rasa great flexibility.

A pipeline defines the data processing order for each component. There are dependencies
between certain components. One failure in such dependency requirements will fail
the whole pipeline. Rasa NLU checks the dependency requirements for each and every
component. If any of those dependency requirements fail, Rasa will stop the program and
give corresponding errors and warnings.

Overview of Rasa NLU components 39

One NLU application normally includes both an intent recognition task and entity
extraction task. To accomplish those tasks, here is a typical Rasa NLU pipeline:

Figure 2.3 – A typical Rasa NLU pipeline

Let's look at the components within this typical Rasa NLU pipeline:

• Language model component: This loads the language model files to support the
following components. For example, spaCy and MITIE can be initiated here.

• Tokenizer component: This splits text into tokens.

• Featurizer component: This extracts features from token sequences. There can be
multiple feature extraction components to generate different features.

• Entity extractor component: This performs named entity extraction on the text
using the features provided by the previous components.

• Intent classifier component: This classifies text into different user intents according
to context. It is also called intent recognition.

• Structure output: This organizes the prediction results into structured data and
outputs it. This part is not a component but a built-in function within the pipeline.
Developers are not able to directly access it as a component.

Rasa NLU's pipeline has the following features:

• The sequential order of components is critical. For example, normally, the entity
extraction component cannot work properly unless it has the correct inputs of
tokenization results from the previous component. If this is the case, there must be a
tokenizer component before the entity extraction component.

• A component is replaceable and can be plugged in with different versions or
implementations. For example, you can plug in a tokenizer from Stanford CoreNLP
or from spaCy, and they should both give you reasonable tokenization results.

• Some components are exclusive. For example, you should not have tokenization
results from both Stanford CoreNLP and spaCy. Otherwise, there will be confusion.

• Some components can be used simultaneously. For example, you can have both
rule-based components and word-embedding-based components for text feature
extraction. The features from both components can be used together in the model.

Since typical Rasa pipelines always start with language model components, let's take a
closer look at the language model components first.

40 Natural Language Understanding in Rasa

Language model components
The language model component loads the pre-trained word embedding. When you
choose which component, we recommend that you use HFTransformersNLP first (in
the newer version of Rasa, use LanguageModelFeaturizer that will be introduced
later). This is because HFTransformersNLP usually has better accuracy. If you cannot
use HFTransformersNLP due to limitations in computing power, memory, or disk
capacity, then it is recommended that you choose from SpacyNLP and MitieNLP based
on the tests on your dataset.

Here are all language model components currently supported by Rasa:

Figure 2.4 – Built-in language model components

In the next section, we will introduce tokenizer components.

Tokenizer components
Tokenizer components are closely related to languages. No tokenizer can support
all languages. You should choose the appropriate tokenizer according to your target
language. WhitespaceTokenizer can be used for space-splittable languages. That
means if your target language is English, you should use WhitespaceTokenizer.
For the Chinese language, you should use JiebaTokenizer. MitieTokenizer
(which uses a pre-trained model from MitieNLP) is usually used for word segmentation
in languages (such as Japanese, Chinese, or Korean) that do not use space to split
words. Your chosen tokenizer should support the language used by your pre-trained
model. SpacyTokenizer currently supports about 63 languages. You can check
whether your target language is on the list or not at https://spacy.io/usage/
models#languages.

https://spacy.io/usage/models#languages
https://spacy.io/usage/models#languages

Overview of Rasa NLU components 41

There are the tokenizer components Rasa supports:

Figure 2.5 – Built-in tokenizer components

It is also not difficult to extend Rasa to support other tokenizers thanks to Rasa NLU's
pipeline design. All we need is to implement a tokenization component ourselves and we
will show you how in Chapter 8, Working Principles and Customization of Rasa.

Now we already have components that can tokenize text to tokens. In the next section, we
will introduce featurizer components that can transform text into features.

Featurizer components
For both entity extraction and intent classification, features provided from upstream
components are required. Developers can use multiple components to do feature
extraction. Those components have implemented feature union operation so developers
can freely choose and combine feature extraction components.

Generally, we recommend using LanguageModelFeaturizer, because it
supports many languages and has outstanding performance. If you cannot use
LanguageModelFeaturizer, then we recommend you to try ConveRTFeaturizer
and SpacyFeaturizer. If none of the above featurizers supports your target
language, then you can try using MitieFeaturizer and your own pre-trained
model. If the Rasa model does not work well, then you can consider adding
LexicalSyntacticFeaturizer, which will add additional features to the input.
Using RegexFeaturizer can provide features based on dictionary and regular
expressions for subsequent intent classification and NER components.

42 Natural Language Understanding in Rasa

All the featurizers are shown in the following table:

Figure 2.6 – Built-in featurizer components

In the next section, we will introduce entity extraction components that can extract
named entities from the text features.

Entity extraction components
Rasa supports multiple entity extraction components. Most of those components should
not be used together, with a few exceptions that can be used together under certain
conditions. Some components can only produce predefined entities and cannot be trained
on developers' own entities.

We recommend that you try DIETClassifier first, because it usually has better
performance. If the extracted entities you want include time, date, URL, phone number,
and email, then you can consider using DucklingEntityExtractor. It can help you
extract these entities and convert them into structured data without training. You can visit
https://github.com/facebook/duckling for a list of all the entities it supports.
If you want to extract entities such as people's names, place names, and organization
names, then you can try SpacyEntityExtractor. It can help you automatically extract
without training. You can see the list of entities supported by each language model at
https://spacy.io/models. If your entities are a small finite set or can be matched by
regular expressions, then you will find RegexEntityExtractor very useful.

Here, we list all entity extraction components and give some brief descriptions as follows:

https://github.com/facebook/duckling
https://spacy.io/models

Overview of Rasa NLU components 43

Figure 2.7 – Built-in entity extraction components

For now, we already know the components that can extract named entities for us. In the
next section, we will introduce components that do the job of intent classification.

Intent classifier components
We recommend trying DIETClassifier first, which is the best choice in
most cases. If you cannot use DIETClassifier, then you can choose from
MitieIntentClassifier and SklearnIntentClassifier based on the tests
on your dataset. FallbackClassifier is a special component for handling fallback
situations, and we will discuss it in Chapter 4, Handling Business Logic.

Here we list all the intent classifier (also called intent recognition) built-in components
in Rasa:

Figure 2.8 – Built-in intent classifier components

44 Natural Language Understanding in Rasa

Note that Rasa develops its own Dual Intent Entity Transformer (DIET) technology
in DIETClassifier that supports multi-task modeling for both entity extraction and
intent recognition.

So far, we have introduced all the components of NLU processing. In Rasa, there is a
special component that can help us easily deal with FAQ-like conversations. In the next
section, we will introduce it.

Handling frequently asked questions by using a
response selector
For simple question-answering problems such as Frequently Asked Questions (FAQs),
NLU alone can easily tackle the tasks. Rasa implements the ResponseSelector
component to achieve this.

So far, we have learned the different types of components. In the next section, we will
discuss how the Rasa framework configures and orchestrates components.

Configuring your Rasa NLU via a pipeline
As mentioned in the previous section, Rasa NLU is a general framework based on
pipelines. This gives Rasa NLU maximum flexibility.

What is a pipeline?
A pipeline in Rasa defines the dependency relationship and data flow direction
between the different components, and it allows the developer to configure each of the
components. The pipeline gives the Rasa framework great flexibility and extensibility. We
will discuss the extensibility advantages of pipelines in Chapter 8, Working Principles and
Customization of Rasa.

In the next section, we will learn how to use the pipeline to orchestrate components.

Configuring a pipeline
The configuration format Rasa NLU uses is YAML. Here is an example of a configuration
file of Rasa NLU:

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: RegexFeaturizer

Configuring your Rasa NLU via a pipeline 45

 - name: LexicalSyntacticFeaturizer

 - name: CountVectorsFeaturizer

 - name: CountVectorsFeaturizer

 analyzer: char_wb

 min_ngram: 1

 max_ngram: 4

 - name: DIETClassifier

 epochs: 100

 - name: EntitySynonymMapper

 - name: ResponseSelector

 epochs: 100

 - name: FallbackClassifier

 threshold: 0.3

 ambiguity_threshold: 0.1

policies:

 # It has nothing to do with NLU, so it is omitted here

There are generally two main keys in the configuration file of Rasa NLU: language and
pipeline. In config.yml, there is also a policies key, but it is used to configure
dialogue management. We will discuss dialogue management and this key in Chapter 3,
Rasa Core.

Language defines which language Rasa NLU is going to process. Rasa itself is a
language-agnostic chatbot framework and can support multiple languages. However,
the components to be used are likely to be dependent on the language choice. Some
components can only support specific languages. For example, a tokenizer may only
support one or two languages and will not be able to support all the languages. The jieba
tokenizer that is widely used for Chinese language processing cannot handle Japanese
tokenization. Also, some components contain different model packages for different
languages. spaCy supports different model packages specifically in different languages.

The language configuration in Rasa gives the target language information to components.
If the language is not supported, the component can throw exceptions to developers
to suggest switching to another valid component. If the component supports multiple
language model packages, the language configuration can also guide the component to
load the corresponding model package. For example, in spaCy, the model package with
the same name as the language configuration will be loaded by default.

46 Natural Language Understanding in Rasa

The configuration format is language: <lang_code>, where <lang_code> is the
language code under the ISO 639-1 standard. The code for English is en, and the code for
Chinese is zh. If Rasa cannot find this configuration, it will set it to be en by default.

The pipeline is the core of the configuration file. It consists of a list (in YAML, it starts
with -). Each element in the list is a dictionary (in YAML, it is in the format of name:xxx).
Each dictionary corresponds to a pipeline component. Each component is defined by
the name key in the dictionary. The other keys are configurations to its component and
are customized by each component. Rasa is responsible for transmitting the component
configuration information to the corresponding component during initialization.

In the previous example, there are six components. Note that
CountVectorsFeaturizer appears twice in the pipeline, which is allowed by Rasa.
And in the second time, it contains three configuration items: analyzer:"char_wb",
min_ngram:1, and max_ngram:4.

How to choose the components in the pipeline is a difficult problem. This is related
to your target language, deployment environment, application scenarios, and desired
features. Different target languages may require different components (for example,
different tokenizers or different language model components). Different deployment
environments may make certain components unusable (for example, when deployed on
low-resource computers, some components will not be suitable). Different application
scenarios may require the use of different components to achieve the best results
(for example, in some scenarios, using RegexEntityExtractor is better than
DIETClassifier). The function of the dialogue robot will also lead to different
component selection (whether to support chitchat or FAQs will determine whether to use
the ResponseSelector component).

Here, we recommend a basic NLU configuration suitable for English as the target
language. On this basis, you can add other components (described in later chapters)
according to functional requirements. The basic NLU configuration is as follows:

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: LanguageModelFeaturizer

 model_name: "bert"

 model_weights: "rasa/LaBSE"

 - name: RegexFeaturizer

 - name: DIETClassifier

The output of Rasa NLU 47

In our experience, this configuration of LanguageModelFeaturizer +
DIETClassifier has good performance. It can be adapted to many target languages
with slight changes (such as the tokenizer and the model_weights parameter of
LanguageModelFeaturizer). RegexFeaturizer can make good use of the
dictionary and regular expression features and is suitable for many application scenarios.

Now we have learned how to configure Rasa NLU. In the next section, we will talk about
the output of Rasa NLU.

The output of Rasa NLU
In order to properly debug Rasa NLU, developers should understand its output format.

The output format of Rasa NLU's inference is as follows:

{

 "text": "show me chinese restaurants",

 "intent": "restaurant_search",

 "entities": [

 {

 "start": 8,

 "end": 15,

 "value": "chinese",

 "entity": "cuisine",

 "extractor": "CRFEntityExtractor",

 "confidence": 0.854,

 "processors": []

 }

]

 }

It contains three main parts: text, intent, and entities. The text field is the raw
text the user inputs. It is just a string and does not have a complex structure, so we will not
set up a subsection for it. The intent and entities fields are complex structures; we
will discuss them in the following subsections.

Let's start with the introduction of the intent field.

48 Natural Language Understanding in Rasa

The intent field – the purpose of the user's utterance
The intent field can be a string representing the intent:

"intent": "restaurant_search"

The intent field can also be a dictionary containing the intent and its confidence from
the intent classifier:

"intent": {

 "name": "greet",

 "confidence": 0.9968444108963013

}

The intent field may also give the intent_ranking showing the confidence of other
possible intents:

{

 "intent": {

 "name": "greet",

 "confidence": 0.9968444108963013

 },

 "entities": [],

 "intent_ranking": [

 {

 "name": "greet",

 "confidence": 0.9968444108963013

 },

<!-- similar outputs are omitted -->

 {

 "name": "mood_great",

 "confidence": 5.138086999068037e-05

 }

],

 "text": "hello"

}

In the next section, we will cover the entities field.

The output of Rasa NLU 49

The entities field – key parameters of user's utterance
The results of entity extraction are represented by the start and end position of the
entity within the text, the entity value (value field), and entity type (entity field).
Besides, there can be other supporting information, for example, the confidence
and extractor fields. Note that the entity position may be inconsistent with the
raw text, because some components may perform certain processing steps on the raw
data to facilitate developers. For example, date information can be standardized by the
component.

Here is an example of entities:

"entities": [

 {

 "start": 8,

 "end": 15,

 "value": "chinese",

 "entity": "cuisine",

 "extractor": "CRFEntityExtractor",

 "confidence": 0.854,

 "processors": []

 },

 <!-- other entities -->

]

It is worth noting that the location of entities in the text uses Python indexing and slicing
conventions. This means that the position starts at 0. The start position is included, and
the end position is not included. In the example, starting position 8 is the starting position
of the entity value, but position 14 (not 15) is the position of the last entity value.

So far, we have learned the intent and entities fields. In the next section, we will
introduce other possible fields that Rasa may output.

Other possible fields
There are also other fields that may be output by components. For example:

{

 "text": "show me chinese restaurants",

 "intent": "restaurant_search",

 "entities": [

50 Natural Language Understanding in Rasa

 {

 "start": 8,

 "end": 15,

 "value": "chinese",

 "entity": "cuisine",

 "extractor": "CRFEntityExtractor",

 "confidence": 0.854,

 "processors": []

 }

],

 "response_selector": {

 "default": {

 "response": {

 "name": null,

 "confidence": 0.0

 },

 "ranking": []

 }

 }

}

From the example, we can see that it has an additional field called response_selector;
it is generated by the ResponseSelector component, which will be introduced in
Chapter 5, Working with Response Selector to Handle Chitchat and FAQs.

Besides the ReponseSelector, there also exist components that generate additional
fields. The generated information is useful, such as getting better accuracy or output debug
info. Here is a sample additional field from the DucklingHTTPExtractor component;
its output can help users to get several types of entities without training data:

{

 "additional_info":{

 "grain":"day",

 "type":"value",

 "value":"2018-06-21T00:00:00.000-07:00",

 "values":[

 {

Training and running Rasa NLU 51

 "grain":"day",

 "type":"value",

 "value":"2018-06-21T00:00:00.000-07:00"

 }

]

 },

 "confidence":1.0,

 "end":5,

 "entity":"time",

 "extractor":"DucklingHTTPExtractor",

 "start":0,

 "text":"today",

 "value":"2018-06-21T00:00:00.000-07:00"

}

With the training data and pipeline in place, in the next section, we will start to train and
serve Rasa NLU.

Training and running Rasa NLU
Rasa is a very cohesive framework. We can use the built-in command-line tools of Rasa
that we already introduced in the first chapter to perform tasks such as model training and
prediction.

Let's start with model training.

Training our models
We can start training models after we have configured the pipeline and got the training
data. Rasa provides developers with commands that can help us train a model quickly. As
long as we are using the official project structure, Rasa's commands are able to locate the
configuration and data files.

The command for training a model is as follows:

rasa train nlu

52 Natural Language Understanding in Rasa

This command will look for training data in the data path, use config.yml as the
pipeline configuration, and save the model (a zipped file) into the models path with
nlu- as the prefix of the model's name. The length of training time depends on the
components used and the size of the training dataset. The log will be printed continuously
during the training process, and the user can see the current training progress from it.

After the training command is finished, we can test our model via the command line.

Testing models from the command line
Rasa provides the command to test the model directly from the command line and
interact with the model. This command is rasa shell; we already introduced this Rasa
command in Chapter 1, Introduction to Chatbots and the Rasa Framework. It will run the
Rasa server in the background and provide a command-line-based interactive UI to allow
users to interact with the Rasa server. You can start using the Rasa shell by typing the
following command:

rasa shell nlu

This command opens the Rasa shell. Developers can do text-based interaction with the
model in the shell directly. If there are multiple models (multiple model files under the
models path), Rasa will load the most recent model.

To run the Rasa shell with a specific model, run the following command:

rasa shell -m models/nlu-<timestamp>.tar.gz

Here is the user interface for the Rasa shell:

NLU model loaded. Type a message and press enter to parse it.

 Next message:

 hello <-- This is the user input -->

{

 "intent": {

 "name": "greet",

 "confidence": 0.9968444108963013

 },

 "entities": [],

 "intent_ranking": [

 {

 "name": "greet",

Training and running Rasa NLU 53

 "confidence": 0.9968444108963013

 },

 <-- Some similar outputs are omitted -->

 {

 "name": "mood_great",

 "confidence": 5.138086999068037e-05

 }

],

 "response_selector": {

 "default": {

 "response": {

 "name": null,

 "confidence": 0.0

 },

 "ranking": []

 }

 },

 "text": "hello"

}

Next message:

 | <-- Waiting for user's input here -->

In the next section, we will introduce how to start a server for inference from other
computers.

Starting the Rasa NLU service
The service of Rasa NLU uses a RESTful HTTP API. Start the service by running the
following:

rasa run --enable-api

Now you can send a request to the /model/parse path to use the Rasa NLU prediction
service. For example, if we use curl as a client:

curl localhost:5005/model/parse -d '{"text":"hello"}'

54 Natural Language Understanding in Rasa

In a real debugging situation, developers can consider using tools such as Postman to send
requests and test. In Figure 2.9, we show is an example of using Postman to send requests
and get results:

Figure 2.9 – An example of using Postman to send NLU requests and check results

So far, we have learned how to use Rasa NLU in theory. In the next section, we will do
some exercises to make sure you understand them correctly.

Practice – building the NLU part of a
medical bot
The best way to learn Rasa NLU is by practice. Here, we work on a project to build a
simple NLU component for a medical domain chatbot. All the project files can be found
under the directory named ch02 in the GitHub repository at https://github.com/
PacktPublishing/Conversational-AI-with-RASA.

What are the features of our bot?
Our bot supports the following functions:

• Recognize the intent in a medicine inquiry or hospital and department inquiry.

• Extract entities for diseases and symptoms.

• Simple greetings.

https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://github.com/PacktPublishing/Conversational-AI-with-RASA

Practice – building the NLU part of a medical bot 55

How can we implement our bot in Rasa?
Let's follow the official Rasa project structure:

.

 ├── config.yml

├── credentials.yml

├── data

│ └── nlu.yml

├── domain.yml

├── endpoints.yml

└── models

In this simple NLU project, there are two files – credentials.yml and endpoints.
yml – that we have not covered yet. We will introduce them in the next chapter. For now,
just ignore them. We introduce the other files here. Let's start with the training data.

Creating NLU training data
Generally, NLU training data is stored in the data/nlu.yml file. For this project, we
have the training data in the following list (the full content of this file has already been
provided to you in the GitHub repository):

version: "2.0"

nlu:

 - intent: greet

 examples: |

 - Hello

 - Hi

 - intent: goodbye

 examples: |

 - ByeBye

 - bye

 - intent: medicine

 examples: |

 - What medicine should I take if I have a [cold](disease)

 - I am [constipated](disease), what medicine should I
take?

56 Natural Language Understanding in Rasa

 - intent: medical_department

 examples: |

 - Which department should I go to when I have a [cold]
(disease)?

 - I have [constipation](disease), which department should
I go to?

 - intent: medical_hospital

 examples: |

 - Which hospital should I go to for my [stomachache]
(disease)?

 - Are there any good hospitals or health centers to
recommend for [weight loss](disease)?

In the next section, we will talk about the domain configuration.

Configuring the domain
Generally, Rasa's domain settings are stored in the domain.yml file. For this project, we
only need to list all the intents, as follows:

version: "2.0"

intents:

 - greet

 - goodbye

 - medicine

 - medical_department

 - medical_hospital

Configuring the pipeline
Generally, Rasa's pipeline configuration is stored in the configure.yml file. Since we
have only learned the NLU part, we only set up the NLU pipeline configuration:

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: RegexFeaturizer

 - name: LexicalSyntacticFeaturizer

 - name: CountVectorsFeaturizer

 - name: CountVectorsFeaturizer

Practice – building the NLU part of a medical bot 57

 analyzer: char_wb

 min_ngram: 1

 max_ngram: 4

 - name: DIETClassifier

 epochs: 100

policies:

In the preceding configuration (the last line), there is a key named policies with an
empty value. This key is used to configure dialogue management, but we have not learned
the dialogue management of Rasa yet (this will be taught in the next chapter). Therefore,
the value here is empty.

So far, we have the training data and pipeline. In the next step, we will train the model.

Training NLU models
Run the following command at the project root path to train an NLU model:

rasa train nlu

After training is done, there will be a model automatically saved as a zipped file in the
models folder.

In the next step, let's run the model and make some inferences.

Setting up the model server and making inferences
Now we can use the built-in Rasa shell client to test our NLU model. Run the following
command at the project root path:

 rasa shell nlu

It gives a command-line user interface like the following:

NLU model loaded. Type a message and press enter to parse it.

 Next message: <-- The cursor is blinking here. -->

Now we can input the testing sentences such as What medicine should I take
if I catch a cold, and we can get NLU results as follows:

{

 "text": "What medicine should I take if I catch a cold",

 "intent": {

58 Natural Language Understanding in Rasa

 "id": 179298967045811726,

 "name": "medicine",

 "confidence": 0.9999912977218628

 },

 "entities": [

 {

 "entity": "disease",

 "start": 41,

 "end": 45,

 "confidence_entity": 0.9994207620620728,

 "value": "cold",

 "extractor": "DIETClassifier"

 }

],

}

We see that Rasa returns the results of the intent classification and a list of named entities.
In fact, Rasa also returns an intent ranking, as shown in the following code block (this
field is only provided by some components):

 "intent_ranking": [

 {

 "id": 179298967045811726,

 "name": "medicine",

 "confidence": 0.9999912977218628

},

<-- For brevity, we have omitted some similar items here. -->

 {

 "id": -5857627908142243930,

 "name": "goodbye",

 "confidence": 1.1760136686689293e-07

 }

]

Summary 59

Summary
In this chapter, we discussed the NLU part of Rasa. We gave a detailed explanation of the
NLU training data structure. We discussed the high-level architecture of pipelines and
components. We stepped through an example NLU component of a medical bot. This
is an important part of Rasa. At this point, as a reader, you should have understood the
architecture of Rasa NLU and how to configure it. You should be able to perform model
training and inference operations.

In the next chapter, we will introduce Rasa Core.

3
Rasa Core

In this chapter, we introduce how to implement dialogue management in Rasa. Rasa Core
is the component in Rasa that handles dialogue management. Dialogue management is
responsible for keeping a record of the conversation context and choosing the next
actions accordingly.

The dialogue management system can be divided into four parts. Dialogue state tracking
updates the dialogue state according to the previous round of dialogue and the previous
round of system actions, as well as the user's intentions and entities in the current round.
The dialogue policy is responsible for outputting dialogue actions according to the
dialogue state. The dialogue action is based on the decision of the dialogue strategy to
interact with the backend interface to complete the actual task execution. And finally, the
dialogue result output outputs the result of the system operation in a user-friendly way.

In Rasa Core, these functions have all been integrated, and users can use Rasa's dialogue
management functions in an end-to-end machine learning-based manner. After reading
this chapter, you should be able to understand the components of Rasa's dialogue
management system, including domain, story, action, slot, and policy. You should be
able to define your own custom actions and understand how Rasa communicates with
instant messaging software. And finally, you should be able to develop simple chatbots.

62 Rasa Core

In particular, we will be covering the following topics:

• Understanding the universe of your bot (domain)

• Training data for dialogue management (stories)

• Reacting to user input (action)

• Understanding the memory of your bot (slots)

• Understanding the decision-maker of your bot (policies)

• Building custom actions using Rasa SDK

• Using channels to communicate with instant messaging software

• Building a tell-the-time bot

Technical requirements
In this chapter, we will introduce a new Python package called rasa-sdk. It has exactly
the same dependencies as rasa. We already introduced this in Chapter 1, Introduction
to Chatbots and the Rasa Framework. Specifically, you need a Python 3.6, 3.7, or 3.8
environment to successfully install the software.

You can find all the files for this chapter in the ch03 directory of the GitHub
repository at the following URL: https://github.com/PacktPublishing/
Conversational-AI-with-RASA.

Understanding the universe of your bot
(domain)
A domain defines all the information a chatbot needs to know, including intents,
entities, slots, actions, forms, and responses. All this information gives clear
definitions of the inputs and outputs of a model.

A sample domain file is as follows:

intents:

 - greet

 - goodbye

 - affirm

 - thank_you

entities:

https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://github.com/PacktPublishing/Conversational-AI-with-RASA

Understanding the universe of your bot (domain) 63

 - name

slots:

 name:

 type: text

responses:

 utter_greet:

 - "hey there {name}!" # {name} is template variable

 utter_goodbye:

 - "goodbye"

 - "bye bye"

 utter_default:

 - "default message"

actions:

 - utter_default

 - utter_greet

 - utter_goodbye

In this sample domain file, we can see some fields: intents, entities, slots,
responses, and actions. Since form functions are particularly important to the
user and they are much more complex than other functions, we will introduce the form
function in the next chapter; in this chapter, let's simply ignore it.

Let's start with intents and entities.

Intents and entities
These two fields provide the chatbot with the potential intents and entities that it needs to
handle. We have already given a detailed explanation of what intents and entities
are in Chapter 2, Natural Language Understanding in Rasa. In simple terms, the intent
is what the bot is trying to accomplish, and the entity represents the key information
provided by the user. For example, in the sentence, how is the weather tomorrow?, the
user's intention (that is, the purpose) is to query the weather, and the query date is
tomorrow. The date query is the entity. They should be consistent throughout in Rasa
Natural Language Understanding (NLU).

In the next section, we will talk about slots.

64 Rasa Core

Slots
The slot defines the information that the chatbot needs to track or memorize during the
conversation.

The following is an example showing slots:

slots:

 priority:

 type: categorical

 values:

 - low

 - medium

 - high

In this example, the name of the slot is priority. Each slot has a type. Here, the
type of slot is categorical. Each type owns its specific feature configurations that
define the scope of slot values, so that the model can easily convert the slot values into
machine learning features (we will cover this later in Chapter 8, Working Principles and
Customization of Rasa). In this example, the values of the slot are restricted to low,
medium, and high. Rasa also allows developers to customize their own slots.

In the following section, we will introduce actions.

All possible actions the bot can take (actions)
The action is the output of the dialogue management module. Actions define the things
that the chatbot can perform. Some examples are providing users with buttons to click,
sending messages to the user, calling an external Application Programming Interface
(API) or querying an internal database, and so on.

In Rasa, actions starting with utter_ are considered as the user templates. Next, we will
talk about the Natural Language Generation (NLG) part of Rasa: responses.

All the predefined replies to users (responses)
Responses define the templates of a chatbot's replies. For example, see the following:

responses:

 utter_greet:

 - "Hello {name}!" # {name} is a template variable

 utter_goodbye:

Understanding the universe of your bot (domain) 65

 - "Goodbye"

 - "Bye" # One of them is randomly chosen if there are
multiple templates

 utter_default:

 - "This is a default message"

There are three templates here: utter_greet, utter_goodbye, and utter_
default. All the names of the responses start with utter_.

The template string of Rasa supports variables and randomly chooses one of the
variations. The {name} variable in utter_greet here is a variable or a placeholder and
will be replaced by the real value of the name slot when it is rendered.

Another method is to use dispatcher.utter_message(template="utter_
greet", name="Silly") to set the real value Silly to the template variable
{name} when we customize the template rendering. There are two template variations,
"Goodbye" and "Bye", for utter_goodbye, and one of them will be randomly
chosen when rendered.

Not only simple text responses are supported but also rich responses. Rich responses are
similar to common rich text. They are able to hold information other than text, for example,
images and buttons. Rich responses in Rasa need support from channels (chat or messenger
platforms such as Facebook Messenger or Telegram). For example, refer to the following:

responses:

 utter_cheer_up:

 - text: "Here is the picture of the item:"

 image: https://some.url/to/some/image.jpg

Another type of rich response is the button, and it needs channel support as well. The
following is an example:

responses:

 utter_greet:

 - text: "What is your gender?"

 buttons:

 - title: "Male"

 payload: '/set_gender{"gender": "male"}'

 - title: "Female"

 payload: '/set_gender{"gender": "female"}'

66 Rasa Core

Here, the title field will be displayed to users. When the user clicks on the button, the
corresponding payload field will be transferred to Rasa.

Developers can define different outputs for different channels. If there are multiple
template variations for one response, we can use the channel field to assign a specific
template variable to a specific channel. For example, refer to the following:

responses:

 utter_welcome:

 - text: "Hello, dear Slack users!"

 channel: "slack"

 - text: "Hello, dear users!"

Here there are two template variations for utter_welcome. The first one with Hello,
dear Slack users! is bundled to a Slack channel by a defining channel: slack.
When the response is rendered, if the system detects the user is from the Slack channel,
it will use this specific template variation. For more complex outputs, Rasa also supports
custom fields for developers to customize complex response content.

In some cases, it is not the best choice to retrain the bot just because of changes in the
responses, because retraining the model may take a long time and a lot of computing
resources. In addition, for complex scenarios, Rasa's built-in template-based response
generation is not powerful enough to complete complex response generation. Fortunately,
Rasa allows you to delegate the response generation function to an external service. This
is called an NLG service. After the external NLG service is enabled, the bot no longer
directly renders the template through responses, but instead sends the template rendering
request to the NLG service (external HTTP server), and the service returns the generated
response. Since this feature is rarely used, we will not continue to talk about it in depth.
You can learn more by reading the official documentation, available at the following URL:
https://rasa.com/docs/rasa/nlg.

In the next section, we will talk about how to control conversational sessions.

Configuring sessions
The session is a conversation between the user and the bot. One session can persist for
multiple dialogue turns. Currently, Rasa supports two types of session configurations:

• session_expiration_time defines the expiration time (in minutes) after the
user gets the newest message. There is no expiration time if it is set to 0.

https://rasa.com/docs/rasa/nlg

Training data for dialogue management (stories) 67

• carry_over_slots_to_new_session defines whether the system should
bring the slots from the previous session into the new session. If set to false, the
new session will not get the slot values from the previous session.

Here is a configuration example:

session_config:

 session_expiration_time: 60

 carry_over_slots_to_new_session: true

Besides session_config, Rasa also has a global configuration item called store_
entities_as_slots. It decides when the system gets NLU results, and whether it will
synchronize the value to a slot with the same name. The default value is true.

We have now discussed the domain, its function, and configuration. In the next section,
we will talk about a new concept – the story.

Training data for dialogue management
(stories)
Rasa learns from conversations and manages knowledge by training on stories. The story
is a high-level semantic way of recording conversations. It records not only the expressions
from users, but also the correct state change within the system.

Rasa uses YAML format to store stories. Here is an example of a story:

stories:

 - story: This is the description of one story

 steps:

 - intent: greet

 - action: action_ask_howcanhelp

 - slot_was_set:

 - asked_for_help: true

 - intent: inform

 entities:

 - location: "New York"

 - price: "cheap"

 - action: action_on_it

 - action: action_ask_cuisine

68 Rasa Core

 - intent: inform

 entities:

 - cuisine: "Italian"

 - action: restaurant_form

 - active_loop: restaurant_form

Each story is an element of the stories list.

The story is a dictionary in the data structure. A valid story has at least two mandatory
fields: story and steps. The story field records the summary of the story (the
developer's description of the plot of the story). In this example, the description of the
story is This is the description of one story. The other field is the steps
field. This is used to record the steps of the story. The steps field is a list and linearly
records the conversation flow between user and machine. Every time the user sends a
message, the bot will execute one more series of tasks, and then wait for the user's new
input (not reflected in the story). The user sends a message again and the flow goes on. In
this way, steps actually consist of alternative information on the user's messages and the
machine's actions.

Let's discuss the user's messages first.

User messages
User messages save the intent and entity information from the users. The format is
as follows:

- intent: inform

 entities:

 - location: "New York"

 - price: "cheap"

In this example, intent gives the intent information, and entities gives the
information of multiple entities. The entity with the location type has the New York
value, and the entity with the price type has the cheap value.

Now we have covered the user's part of the story. In the next section, we will discuss the
machine's part of the story.

Training data for dialogue management (stories) 69

Bot actions and events
When the dialogue management system is trained and tested, Rasa will not be able to
execute the corresponding actions, so developers will not be able to get the output of the
actions (represented as events). Thus, developers need to clearly define them in the story.
The bot action includes what the action is and what event the action returns.

Bot actions are simply represented in YAML. An example is as follows:

- action: action_ask_howcanhelp

Here, action_ask_howcanhelp is the bot action.

For complex stories, there can be multiple actions from Rasa after one user request. For
example, refer to the following:

- action: action_on_it

- action: action_ask_cuisine

For built-in actions, Rasa can automatically alter the state change-related information in
the downstream processing, according to action types. However, Rasa cannot confirm
the state change for customized actions during the training process. Developers need to
manually define the state change. This kind of state change is called an event. Common
events include slot events and loop events.

A slot event is an event that can make changes to the slot state. For example, refer to
the following:

- slot_was_set:

- asked_for_help: true

Here, the slot of asked_for_help is set to be true.

A loop event is an event that can be activated or deactivated. For example, refer to
the following:

- active_loop: restaurant_form

Here, the loop of restaurant_form is activated.

In order to make it easier for users to write stories, Rasa provides some useful features. In
the next section, we will talk about them.

70 Rasa Core

Auxiliary features (checkpoints and OR statements)
To support users to efficiently express complicated information within stories, Rasa provides
two auxiliary features: checkpoints and OR statements. Let's start by looking at checkpoints.

Checkpoints
Checkpoints are used to reduce the repetitive parts in a story. Checkpoints with the same
name can switch to each other. For example, refer to the following:

stories:

 - story: Process starts

 steps:

 - intent: greet

 - action: action_ask_user_question

 - checkpoint: check_asked_question

 - story: Handle user's confirmation

 steps:

 - checkpoint: check_asked_question

 - intent: affirm

 - action: action_handle_affirmation

 - checkpoint: check_flow_finished

 - story: Handle user's denial

 steps:

 - checkpoint: check_asked_question

 - intent: deny

 - action: action_handle_denial

 - checkpoint: check_flow_finished

 - story: Process ends

 steps:

 - checkpoint: check_flow_finished

 - intent: goodbye

 - action: utter_goodbye

Training data for dialogue management (stories) 71

A checkpoint at the end of one story can be linked to another checkpoint with the same
name at the start of another story to form a new story. Here, the Process starts story
can be linked to the Handle user's confirmation and the Handle user's
denial story through the check_asked_question checkpoint. In this way, we form
two new stories, and those two new stories can be linked to the Process ends story
through the check_flow_finished checkpoint to form another new story.

We can see from the example that using checkpoints can reduce the repetitive work
required for composing similar stories. However, we should not overuse checkpoints.
Otherwise, our stories will be difficult to read, and their logic will be difficult to interpret
by developers.

Next, we will talk about another helper feature: the OR statement.

OR statements
Sometimes two stories only differ on one specific conversation point. We do not want
to write two almost identical stories just for this small difference. Otherwise, it will be
difficult to maintain the stories afterward. We can use an OR expression to simplify the
stories, as follows:

stories:

 - story:

 steps:

 # ... previous steps

 - action: utter_ask_confirm

 - or:

 - intent: affirm

 - intent: thankyou

 - action: action_handle_affirmation

Here, we actually generate two stories with an OR expression. Those two stories are the
same, except that in a single step, one story has its user intent as affirm and the other
story has its user intent as thankyou.

In the next section, we will introduce the augmentation of stories.

72 Rasa Core

Data augmentation (creating longer stories
automatically)
In machine learning, a lack of sufficient data is a common problem, especially in NLP. To
solve this issue, Rasa by default will connect (glue) multiple stories to create a new story.
This is known as data augmentation for stories. Developers can use the –augmentation
flag to set the data augmentation factor when running Rasa commands. Rasa will augment
stories by 10 times the augmentation factor. Setting –augmentation 0 will disable all
the data augmentation behavior. For a more detailed explanation, please visit the official
documentation at the following URL: https://rasa.com/docs/rasa/2.0.x/
policies#data-augmentation.

Now, as we already understand the structure of stories, in the next section, we will talk
about how a bot replies to or calls a third-party service API for users.

Reacting to user input (action)
The action receives user input and the conversation state and processes these according
to business logic. It outputs events that change the conversation state and messages to
reply to the user. There are four types of actions: response actions, form actions, built-in
actions, and custom actions. Let's start with the simplest: response actions.

Response actions
This type of action is linked to the responses in the domain. When this type of action
is called, the system will automatically search for the same name templates within the
responses and render them. Since response actions need to have the same name with their
responses, they need to start with utter_.

In the next section, we will talk about form actions.

Form actions
One important mode for task-oriented conversation is to continuously interact with
users and collect elements that are needed by the tasks until the required information is
complete. This mode is usually referred to as forms. Forms are particularly important, and
we will discuss them in detail later.

In the next section, we will give you a brief introduction to built-in actions.

https://rasa.com/docs/rasa/2.0.x/policies#data-augmentation
https://rasa.com/docs/rasa/2.0.x/policies#data-augmentation

Reacting to user input (action) 73

Built-in actions
Rasa provides developers with default actions for common and business independent
actions, as follows:

Figure 3.1 – Built-in actions

Note that those default actions can be replaced by custom actions with the same name.
Next, we will talk about how to build your own actions.

Custom actions
Most conversational tasks require developers to customize their actions. Custom actions
are implemented by developers to fulfill all kinds of backend communication and
computational requirements. The most common backend communication is to query a
database or call a third-party API.

74 Rasa Core

For practical purposes to fulfill a real industrial need, Rasa custom actions are designed
to provide an independent interface for developers to implement services. Those services
interact with Rasa through the HTTP interface, so the development of services can be in any
language. Rasa also provides developers with Rasa SDK to help Python developers develop
custom action servers efficiently. We will cover custom actions later in this chapter.

Now that we have learned how a bot can react to the user's input via actions, in the next
section, let's talk about the bot's memory elements: slots.

Understanding the memory of your bot (slots)
The slot is the memory of the chatbot. The slot is represented as a key-value pair,
such as city: New York. It records the key information from conversations. The
key information can come from a user's input (intents and entities), or from backend
systems (for example, the result from a payment action: success or failure). Normally, the
information is crucial for the flow of the conversation and will be used by the dialogue
management system to predict the next action.

Let's take an example. In a simple application of a weather forecast, the information of
location and date is key for the dialogue management system to decide the next action. If
the system finds either the location or date missing, it will ask users for the corresponding
information until both are present. Then the system will start to query some weather APIs.

Here, the system only cares about whether the location and date slots are filled. It does not
care about the specific values in those slots, and those values will not affect predicting the
next action. However, in another context, a different slot value may have a crucial impact
on predicting the next action. For example, it may impact whether a payment is successful
or not.

A slot must have a name and a type. For example, refer to the following:

slots:

 slot_name:

 type: text

This is a slot named slot_name, and its type is text.

Now we know how to define slots, in the next section, let's learn the function of slots.

Understanding the memory of your bot (slots) 75

The influences of slots on the conversation
In the configuration of a slot, the developer can set the influence_conversation
flag to true or false, to make the slot affect the conversation or not. The influence_
conversation bool configuration has a default value of true. When it is set as false,
the slot is only used for storing information and will not influence the conversation behavior.

Here is an example:

slots:

 age:

type: text

influence_conversation: false

Here, the slot named age will not influence the conversation behavior. Different types
of slots have different functions in a bot's memory. In the next section, we will discuss
slot types.

Slot types
Each slot must have a type. The slot type decides how the system handles the slot value, so
developers should choose the slot type very carefully.

Slots can have the following types:

• text: The text slot can store text values. Rasa does not care about the value
content, so this type of slot is good for storing common entities.

• bool: The bool slot can only store True or False values. It is good for handling
signals (for example, signals for whether a payment is successful or not).

• category: The category slot can only store predefined limited values (similar
to the enumerated value in programming languages). Note that Rasa will add an
extra other value to the predefined category values. When a specific value is assigned
to the category slot, if it does not match any of the predefined category values, it
will be assigned as other. A category slot is good for storing limited categorical
values, such as gender and marital status. Rasa will use the slot values (converted to
one-hot encodings) as part of features to predict the next actions.

• float: The float slot can store float numbers. A maximum value and a
minimum value need to be defined. If the input value is out of range, it will be set as
the maximum or minimum value. Rasa will use the slot value as part of features to
predict actions.

76 Rasa Core

• list: The list slot can store multiple values. Rasa only considers whether the
list is empty or not as part of its features to predict the next action. The number of
elements and the element values will not affect action prediction.

• any: The any slot has no effect on Rasa's action prediction. Developers can put values
here that are not relevant to the system state for information transferring purposes.

In the next section, we will talk about how to connect slots with entities.

Automatic slot filling
In many cases, the slot value is given by the entity value. Rasa, by default, will assign
the entity value generated from an NLU module to the slot with the same name as that
entity. The developer can add auto_fill: False in the slot configuration to turn
off this feature.

Next, we will talk about how to set initial values for slots.

Setting initial values for slots
A slot can be configured with customized initial values. If we want to set the slot name
value to human as the initial value, we can do the following:

slots:

 name:

 type: text

 initial_value: "human"

We have learned about the function of slots and how to define slots. In the next section,
we will discuss how bots make decisions.

Understanding the decision-maker of your bot
(policies)
The policy method learns from stories and predicts the next actions.

Policies need to use a featurizer to convert stories into conversational states, get the state
features, and use those features to predict the next action.

In Rasa, we can have multiple policies. Policies are trained independently and can be used
together for final prediction according to their priorities and confidence scores.

Understanding the decision-maker of your bot (policies) 77

Let's start with policy configuration.

Configuring policies
Policy configuration is done in the config.yaml file within a Rasa project. The part
with key policies is reserved for policy configuration. Here is an example:

policies:

 - name: "MemoizationPolicy"

 max_history: 5

 - name: "FallbackPolicy"

 nlu_threshold: 0.4

 core_threshold: 0.3

 fallback_action_name: "my_fallback_action"

 - name: "path.to.your.policy.class"

 arg1: "..."

The configuration of a policy is similar to the pipeline configuration of the NLU module. It
consists of several lists. Within each list, one element is a dictionary. The dictionary contains
name as the component name, and the rest of the elements are configuration items.

As a powerful framework, Rasa has some built-in policies. In the next section, we will talk
about them.

Built-in policies
Here, we will give brief introductions to Rasa's built-in policies. Users should pay
attention to these policies because they are very important in dialogue management:

• TEDPolicy: TED stands for Transformer Embedding Dialogue. It is a set of
dialogue prediction algorithms developed by Rasa. It uses transformer-based
embeddings to convert the current dialogue into a dialogue vector and searches for
the closest dialogue vector from existing actions.

• MemoizationPolicy: This is a simple policy that directly remembers the states
and corresponding actions and records them into a dictionary. In the prediction
step, the policy will directly look for the corresponding action for the specific state
in the dictionary. If no state is found, it will fail.

• AugmentedMemoizationPolicy: This is MemoizationPolicy with a
forgetting mechanism that will randomly forget a certain number of steps in the
conversation history and try to find a match in stories with the reduced history.

78 Rasa Core

• RulePolicy: This policy is rule-based. It combines all the rule-based
policies in Rasa 1.x, including MappingPolicy, FallbackPolicy,
TwoStageFallbackPolicy, and FormPolicy.

Generally, users only need to use the built-in policies. However, due to the complexity of
developing custom policies, this is generally not recommended. In the next section, we
will introduce how Rasa uses multiple policies to make decisions.

Policy priority
In Rasa, each policy independently makes a prediction for the next action, and the action
with the highest confidence score is used (or in some cases, given higher weight for an
ensemble decision). When scores are the same (in most cases, all get the highest score, 1),
policy priority activates to decide what policy to use. The higher the priority score a policy
has, the higher priority the policy gets. Rasa has a default policy priority setting that, in
general, gives the most reasonable results:

Figure 3.2 – Priorities of built-in policies

Note that although the policy priority score of both built-in and custom components can
be configured by the key on priority, it is not recommended to modify the built-in policy
priorities unless developers completely understand Rasa's source code. There are some
implementations within Rasa that rely on the default priorities. Modifying them may
cause unknown errors.

So far, we have discussed how Rasa works internally. In the next section, we will discuss
how Rasa collaborates with external services.

Connecting with other services via endpoints 79

Connecting with other services via endpoints
As a mature dialogue system, Rasa supports communication with external services and
internal components in a similar way to microservices. In Rasa's terminology, all links
to these services are called endpoints. The endpoint is the connection between Rasa
Core and other services and is defined in endpoints.yml. Currently, the supported
endpoints are as follows:

• Event broker: This allows you to connect your bot to other services that can
process conversation data asynchronously. The event broker publishes messages to
a message broker in order to forward conversations from Rasa to external services.
This is useful for advanced users who want to analyze the conversations.

• Tracker store: Rasa's conversations are stored within a tracker store. Rasa provides
several built-in tracker stores. In general, all tracker stores can be divided into two
categories: the tracker store that is exclusive to the process and the tracker store
that is globally shared outside the process. The former does not require the support
of any external services but cannot achieve multi-instance concurrency. The latter
needs to configure the corresponding third-party service but can achieve multi-
instance concurrency.

• Lock store: This is a lock mechanism used by Rasa to ensure that messages for
given users are always processed in the right order. This is a prerequisite for multi-
instance concurrency in Rasa.

• Action server: This runs custom actions for Rasa. All the custom actions must be
implemented in an action server. We will discuss this in detail in the next section.

• NLG server: This is the external alternative for generating a response, instead of
using a built-in template-based response. This was already discussed in the section
detailing responses.

• Models server: This allows Rasa to dynamically retrieve model files from other
servers. Therefore, using this allows deployment in the production environment to
become more efficient.

The action server and NLU server both have default configuration values that work very
well. The developer may not need to configure them if used on a single machine. We will
continue to discuss tracker store, lock store, and models server in Chapter 9, Testing and
Production Deployment.

So far, we have examined all the elements needed for training. But before our bot can
provide services to customers, we still need to complete a coding job. This will be to
implement all custom actions.

80 Rasa Core

Building custom actions using Rasa SDK
Custom actions provide a mechanism to run specific actions in remote servers. This is
crucial for building a chatbot, as it is the gateway for implementing detailed business logic.

Installing the Rasa SDK package
Rasa integrates rasa-sdk in its package. So, when you install Rasa, it will also
automatically install rasa-sdk. If we want to use rasa-sdk alone (for example, in a
production environment), we can run the following command:

pip install rasa-sdk

Writing custom actions
Custom actions must inherit the Action class from the SDK, so that the server can
automatically discover and register the custom actions. Here is an example:

from rasa_sdk import Action

from rasa_sdk.events import SlotSet

class ActionCheckRestaurants(Action):

 def name(self) -> Text:

 return "action_check_restaurants"

 def run(self,

 dispatcher: CollectingDispatcher,

 tracker: Tracker,

 domain: Dict[Text, Any]) -> List[Dict[Text, Any]]:

 cuisine = tracker.get_slot('cuisine')

 q = "select * from restaurants where cuisine='{0}' limit
1".format(cuisine)

 result = db.query(q)

 return [SlotSet("matches", result if result is not None
else [])]

Building custom actions using Rasa SDK 81

By overriding the name method to return a string, we input the name of the action. By
overriding the run method, we can get the current dialogue information (tracker and
domain) and the dialogue interface (dispatcher) and use this information to complete
the user's action. If we want to make a change to the current dialogue state (for example,
changing the slot information), we will need to return one event or multiple events. If
there is no change to the dialogue state, we still need to return an empty list.

You should have noticed that the run method of a custom action has three parameters:
dispatcher, tracker, and domain. Among them, the most important parameter is
tracker. This represents the tracking status of the current conversation. Next, we will
introduce tracker objects in detail.

Tracker objects (tracking the states of conversations)
A tracker object represents the tracking of the dialogue state, namely the historical
memory of the conversation. In custom actions, developers can use the tracker object
to get the current (or history) dialogue state (entities, slot), and in most cases, input this
into business logic.

Tracker objects have the following attributes:

Figure 3.3 – Attributes of tracker objects

82 Rasa Core

Tracker objects have the following methods:

Figure 3.4 – Methods of tracker objects

So far, we have learned about tracker objects. A tracker object is the most important
input parameter for an action. Now it is time to talk about the outputs of an action: event
objects.

Event objects (records for changes in conversations)
An event object is used when we want to change the dialogue state in a custom action.

Here are the common event objects:

Figure 3.5 – Common event objects

Building custom actions using Rasa SDK 83

The following is a list of the automatic tracking events (created by the system):

Figure 3.6 – Event objects created by Rasa

We already know how to create custom actions. The last piece of the puzzle when building
custom actions is to know how to set them up so that Rasa can access them. This is the
central topic of the next section.

Running custom actions
If custom action is a part of the Rasa package, we can run the following:

rasa run actions

If the custom action is from the independent SDK, we can run the following:

python -m rasa_sdk --actions actions

In the next section, we will discuss how to configure Rasa so that it can communicate with
other software.

84 Rasa Core

Using channels to communicate with instant
messaging software
In most cases, users will be using all kinds of instant messaging (IM) apps to interact
with chatbots.

Rasa is one of the best platforms for seamlessly integrating with different IMs. Rasa
supports most of the mainstream IMs on the market that support OpenAPI. Currently, it
includes Facebook Messenger, Slack, Telegram, Twilio, Microsoft Bot Framework, Cisco
Webex Teams, RocketChat, Mattermost, and Google Hangouts Chat.

Community developers have also developed many open source IMs for Rasa, and those
open source IMs are often used by start-ups and developers for product demonstration
purposes. Rasa Webchat (https://github.com/botfront/rasa-webchat) and
Chatroom (https://github.com/scalableminds/chatroom) have the most
mature functionalities.

In Rasa, the connector is responsible for connecting a Rasa system to an IM. The Connect
feature handles the communication protocol. Since different IMs may share the same
communication protocol, one connector may serve multiple IMs. All of the previously
outlined IMs have their own version of a connector.

Rasa also supports custom connectors for developers to connect to other non-listed IMs.
Rasa supports using multiple connecters simultaneously in order to connect to multiple
IMs. Developers need to configure them in a credentials.yml file.

Rasa has detailed documentation for all the connectors. Here is a configuration example
for Rasa Webchat:

socketio:

 user_message_evt: user_uttered

 bot_message_evt: bot_uttered

 session_persistence: false

Note that socketio is used here because socketio is the underlying protocol for
Rasa Webchat.

So far, we have learned about all the parts of Rasa Core. In the next section, we will do
some hands-on exercises.

https://github.com/botfront/rasa-webchat
https://github.com/scalableminds/chatroom

Building a tell-the-time bot 85

Building a tell-the-time bot
A tell-the-time bot is one of the most basic and simplest chatbots. It is very suitable as
an introductory exercise project, allowing learners to understand what each part of the
Rasa system does. All the project files can be found under the directory named ch03
in the GitHub repository, available at the following URL: https://github.com/
PacktPublishing/Conversational-AI-with-RASA. Let's start by outlining the
target functions this bot should provide.

Defining the features that our bot should provide
In this section, we will list all the functions this exercise project should provide. Let's start
with greetings and goodbyes.

Handling greetings and goodbyes
Example #1: The bot responds to the user's greeting, as follows:

User: Hello!

Bot: Hello, my name is Silly. I can help you get the time and
date. You may ask me "What time is it?", "What's the date
today?" or "What day is it tomorrow?".

Example #2: The bot echoes goodbye to the user, as follows:

User: Bye bye!

Bot: Goodbye!

Asking for a time
Example: The user asks for the current time, as follows:

User: What time is it now?

Bot: It's 12:27 PM.

Asking for a date
Example #1: The user asks for the current date, as follows:

User: What's the date today?

Bot: It's March 25, 2021.

86 Rasa Core

Example #2: The user asks for a future date, as follows:

User: What's the date tomorrow?

Bot: It's March 26, 2021.

Example #3: The user asks for a past date, as follows:

User: What was the date yesterday?

Bot: It's March 24, 2021.

Since it is impossible to convert all possible text representing the date (for example,
tomorrow, Christmas, 5 days ago) to the absolute date (Unix timestamp), our bot needs to
remind users in a friendly way that this is beyond the bot's understanding. The bot should
have no response or directly give users technical errors.

Example #4: A friendly reminder if the user asks a question that is beyond the bot's
understanding, as follows:

User: What's the date for Chinese New Year?

Bot: Sorry, we don't yet support date for "Chinese New Year".

Asking for a weekday
Example #1: The user asks for the current weekday, as follows:

User: What day is it today?

Bot: Thursday.

Example #2: The user asks for a past or future weekday, as follows:

User: What day is it tomorrow?

Bot: Friday.

Similar to asking for a date, we should also have exception handling for asking for
the weekday.

In this section, we covered all the functions this bot should provide. In the next section,
we will learn how to implement such functions file by file.

Building a tell-the-time bot 87

How can we implement those features?
Our project follows the Rasa official project structure, detailed as follows:

.

├── actions

│ ├── actions.py

│ └── __init__.py

├── config.yml

├── credentials.yml

├── data

│ ├── nlu.yml

│ └── stories.yml

├── domain.yml

├── endpoints.yml

└── tests

In this project, actions/__init__.py and credentials.yml are empty. Here we
will introduce the content of the rest of the files.

Let's start with the NLU training file.

Defining the NLU training data
In the NLU training data file, we have training data for five intents: greet, goodbye,
query_time, query_date, and query_weekday. In that training data, we have
one entity: date. We can easily infer the meaning from the intent's name and the entity
name. In our project, all the training data is stored in the data/nlu.yml file. Here,
we will show you part of the training file (the full content has already been provided
to you at https://github.com/PacktPublishing/Conversational-AI-
with-RASA/blob/main/Chapter03/data/nlu.yml) to help you gain a better
understanding of the training data:

version: "2.0"

nlu:

 - intent: greet

 examples:

 - Hello

 - hi

 - intent: goodbye

https://github.com/PacktPublishing/Conversational-AI-with-RASA/blob/main/Chapter03/data/nlu.yml
https://github.com/PacktPublishing/Conversational-AI-with-RASA/blob/main/Chapter03/data/nlu.yml

88 Rasa Core

 examples:

 - ByeBye

 - bye

 - intent: query_time

 examples:

 - What's the time now

 - What time it is

 - intent: query_date

 examples:

 - What's the date [today](date)

 - What's the date of [tomorrow](date)

 - intent: query_weekday

 examples:

 - What day is [today](date)

 - The day of the week

In the next section, we will talk about the story training data.

Defining story data
The story data file contains stories. In this project, our stories are very forthright. Every
intent will trigger its related action. Specifically, the greet intent will trigger the utter_
greet action, the goodbye intent will trigger the utter_goodbye action, the query_
time intent will trigger the action_query_time action, the query_date intent will
trigger the action_query_date action, and the query_weekday intent will trigger
the action_query_weekday action. The entire contents of data/stories.yml are
as follows:

version: "2.0"

stories:

 - story: say greet

 steps:

 - intent: greet

 - action: utter_greet

 - story: query time

 steps:

 - intent: query_time

 - action: action_query_time

Building a tell-the-time bot 89

 - story: query date

 steps:

 - intent: query_date

 - action: action_query_date

 - story: query weekday

 steps:

 - intent: query_weekday

 - action: action_query_weekday

 - story: say goodbye

 steps:

 - intent: goodbye

 - action: utter_goodbye

In the next section, we will talk about domain settings.

Configuring domain settings
The domain.yml file contains Rasa's domain settings. For this project, our domain
settings contain all the intents, entities, actions, and responses. We also
added a date slot to remember date information. This slot has the same name as the
date entity. This design can use the autofill feature of the slot. The full contents of
domain.yml are as follows:

version: "2.0"

session_config:

 session_expiration_time: 60

 carry_over_slots_to_new_session: true

intents:

 - greet

 - goodbye

 - query_time

 - query_date

 - query_weekday

entities:

 - date

slots:

 date:

 type: any

90 Rasa Core

responses:

 utter_greet:

 - text: Hello, I'm Silly, I can check the time, date and
day of the week for you. You can ask me "what time is it now?",
"what day is today?" or "what day is tomorrow?"

 utter_goodbye:

 - text: Goodbye!

actions:

 - action_query_time

 - action_query_date

 - action_query_weekday

 - utter_goodbye

 - utter_greet

In the next section, we will talk about NLU pipeline settings.

Configuring the pipeline and policies
Configurations of Rasa are stored in the config.yml file. In the NLU part, we use
transformer-based components to classify intents and extract entities. In the policy part,
we use MemoizationPolicy and TEDPolicy. The full contents of config.yml are
as follows:

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: LanguageModelFeaturizer

 model_name: "bert"

 model_weights: "rasa/LaBSE"

 - name: DIETClassifier

 epochs: 100

 learning_rate: 0.001

policies:

 - name: MemoizationPolicy

 - name: TEDPolicy

 max_history: 5

 epochs: 100

In the next section, we will talk about endpoint settings.

Building a tell-the-time bot 91

Configuring endpoints
The endpoints.yml file contains Rasa's endpoint settings. For this project, we only
have one endpoint that needs to be specified: action_endpoint. By default, the Rasa
action server will listen to port 5055. Generally, we run the Rasa server and the Rasa
action server on the same machine. So, generally, the action_endpoint endpoint is set
to http://localhost:5055/webhook. The full content of endpoints.yml is as
follows:

action_endpoint:

 url: "http://localhost:5055/webhook"

In the next section, we will talk about custom actions.

Writing your own custom actions
All of the custom actions are defined in the actions/actions.py file. In this project,
we will define three custom actions: action_query_time, action_query_date,
and action_query_weekday.

In this section, we will only show the key code snippets. To view the full code,
please visit our GitHub repository at the following URL: https://github.com/
PacktPublishing/Conversational-AI-with-RASA.

Let's start with action_query_time.

Action (action_query_time)
The action_query_time action takes no inputs and outputs the current time to the
user. Its implementation code is as follows:

class ActionQueryTime(Action):

 def name(self):

 return "action_query_time"

 def run(self, dispatcher, tracker, domain):

 current_time = datetime.now().strftime("It's %H:%M
%p.")

 dispatcher.utter_message(text=current_time)

 return []

https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://github.com/PacktPublishing/Conversational-AI-with-RASA

92 Rasa Core

In the code, we first get the current time by using datetime.now().
strftime("%H:%M:%S"), and then send the time information to the user by calling
dispatcher.utter_message().

Action (action_query_date)
The action_query_date action takes the date slot as the input and outputs date
information according to the date slot. Its implementation code is as follows:

class ActionQueryDate(Action):

 def name(self):

 return "action_query_date"

 def run(self, dispatcher, tracker, domain):

 text_date = tracker.get_slot("date") or "today"

 int_date = text_date_to_int(text_date)

 if int_date is not None:

 delta = timedelta(days=int_date)

 current_date = datetime.now()

 target_date = current_date + delta

 dispatcher.utter_message(

 text=target_date.strftime("It's %B %d, %Y.")

)

 else:

 dispatcher.utter_message(

 text="The system currently doesn't support date
query for '{}'".format(text_date)

)

 return []

In the code, we will try to get the value of the slot named date. If it is None, it means
that the user did not specify a date. We would then use today as the default value. Then
we try to parse the value to a number that represents the offset days to today (0 means
today, 1 means tomorrow, 2 means the day after tomorrow). If the parsing fails, we send
a message to tell users that we currently do not support such a query. If the parsing
succeeds, we will translate the offset information to date information, and send it to users.

Building a tell-the-time bot 93

Action (action_query_weekday)
The action_query_weekday action takes the date slot as the input and outputs the
weekday information according to the date slot. Its implementation code is as follows:

class ActionQueryWeekday(Action):

 def name(self):

 return "action_query_weekday"

 def run(self, dispatcher, tracker, domain):

 text_date = tracker.get_slot("date") or "today"

 int_date = text_date_to_int(text_date)

 if int_date is not None:

 delta = timedelta(days=int_date)

 current_date = datetime.now()

 target_date = current_date + delta

 dispatcher.utter_message(

 text=weekday_to_text(target_date.weekday()))

 else:

 dispatcher.utter_message(

 text="The system currently doesn't support day
of week query for '{}'".format(

 text_date)

)

 return []

The implementation of action_query_weekday is very similar to action_query_
date. The only difference is that action_query_weekday outputs a weekday, while
action_query_date outputs a date.

With all those files in place, we can start to train a Rasa model.

Training models, serving models, and making
inferences
In this section, we will cover how to train a model, how to serve it, and how to make
inferences. Let's start with training a Rasa model.

94 Rasa Core

Training Rasa models
Because we followed Rasa's standard project structure, we can use Rasa's built-in
command-line tools to perform various tasks. Of course, training a new model is one of
those tasks.

Users should open the terminal application in their operating systems. First, change
the working directory to the current Rasa project directory (in most operating systems,
the command that changes the working directory is cd). Second, type the following
command and execute it:

rasa train

After waiting for few minutes, the training will be done. There will be a model
automatically saved as a zipped file in the models folder.

The next step will be to start an action server that provides custom actions for the
Rasa server.

Running the action server
Open a terminal application, change it to the current Rasa project directory, then type the
following command to start an action server:

rasa run actions

Since this is a server, the command will not exit. It will continue running.

In the next section, we will start a Rasa server and use a client to make some inferences.

Running the Rasa server and client
To simplify the configuration, we use Rasa's built-in shell client for this project.

When the Rasa shell starts, it will also start a Rasa server. To run a Rasa server, we need to
open another terminal application instance, then type the following command:

rasa shell

After the loading is complete, we can now interact with the bot in the shell command line:

Your input -> What time is it now?

It's 18:21 PM.

Congratulations! You have completed all the steps and successfully built a tell-the-time
robot.

Summary 95

Summary
In this chapter, we discussed Rasa Core. This is the dialogue management part of Rasa.
You should now have a good understanding of how to define all the key concepts for
Rasa Core: domain, response, story, action, slot, and policy. You should also have a good
understanding of how to use Rasa SDK to develop your own custom actions, and how to
connect Rasa Core with IM software and use Rasa to develop simple chatbots.

In the next chapter, we will take a deeper look at how to handle business logic effectively
in Rasa.

Section 2:
Rasa in Action

In this section, you will learn how to use the functions provided by the Rasa framework
to build different types of chatbots. You will also learn how to create and use custom
components. Through hands-on examples, you will gain practical experience in handling
various dialogue tasks.

This section comprises the following chapters:

• Chapter 4, Handling Business Logic

• Chapter 5, Working with Response Selector to Handle Chitchat and FAQs

• Chapter 6, Knowledge Base Actions to Handle Question Answering

• Chapter 7, Entity Roles and Groups for Complex Named Entity Recognition

• Chapter 8, Working Principles and Customization of Rasa

4
Handling Business

Logic
In this chapter, we will show you how to handle business logic. We will first introduce
fallbacks that handle situations where the system cannot process users' needs. Then we
will introduce the rule policy that uses predefined logic to select a fixed response. Finally,
we will talk about the form where the essential information will automatically gather and
execute related action. With all those functions, Rasa gives developers great flexibility in
handling different business logic. By using these features, you should be able to handle
complex business logic more elegantly and efficiently.

We will cover the following topics:

• The fallback mechanism in Rasa

• Making intents trigger actions

• Using forms to complete tasks

• Practice – building a weather forecast chatbot

Let's start with the fallback.

100 Handling Business Logic

Technical requirements
You can find all the files for this chapter in the ch04 directory of the GitHub repository at
https://github.com/PacktPublishing/Conversational-AI-with-RASA.

In the practice section of this chapter, we will use weather APIs from OpenWeather
(https://openweathermap.org/). We should install the client library for
OpenWeather APIs with the following command:

pip install pyowm

The fallback mechanism in Rasa
In real life, there will always be situations that chatbots cannot handle. For example, the
user input voice is not clear enough, or the requested service is beyond what the system
can offer. Then we need a fallback operation to handle those exceptions so that we can still
elegantly reply to users with something like Sorry, I could not understand what you meant.
Categorized by triggering cause, fallbacks can be NLU fallback or policy fallback.

Now, let's start with NLU fallback.

Handling fallback in NLU
NLU fallback is used to handle situations where the NLU module cannot clearly
understand what user's intent is. The FallbackClassifier component is used for this
purpose, and its configuration example is as follows:

pipeline:

 - name: FallbackClassifier

 threshold: 0.6

 ambiguity_threshold: 0.1

Here, if the confidence of the intent with the highest score is equal to or lower than 0.6
(specified by the threshold field), the intent will be replaced by nlu_fallback.
Suppose the confidence difference between the top two intents is less than 0.1 (specified
by the ambiguity_threshold field). In that case, the intent will also be replaced with
nlu_fallback. Then we can set up a rule to map nlu_fallback to the action we
prefer, for example:

rules:

 - rule: Ask user to speak again

 steps:

https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://openweathermap.org/

Making intents trigger actions 101

 - intent: nlu_fallback

 - action: utter_please_rephrase

Here, we map nlu_fallback to utter_please_rephrase, meaning that once
nlu_fallback is triggered (system triggers NLU fallback condition), then the utter_
please_rephrase action will be performed. The utter_please_rephrase action
will render the template with the same name and the user can get the fallback message.

Rasa predefines action_two_stage_fallback to implement the two-stage fallback
function. If needed, developers can also change the action mapping to action_two_
stage_fallback.

In the next section, we will discuss another fallback: policy fallback.

Handling fallback in policy
Policy fallback is used when the predicted next action is not confident, or there are
multiple best actions with very close confidence scores. To tackle this, we can use
RulePolicy with options as shown in the following code block:

policies:

 - name: RulePolicy

 core_fallback_threshold: 0.3

 core_fallback_action_name: "action_default_fallback"

 enable_fallback_prediction: True

In this example, if all the actions predicted by the policy have a confidence score below
or equal to 0.3 (set in core_fallback_threshold), then action_default_
fallback is picked as the default action. By default, action_default_fallback
will render the template named utter_default and return it to the user. To change
this, developers can change the option in core_fallback_action_name.

In the next section, we will talk about how to make intents trigger actions.

Making intents trigger actions
In actual application scenarios, it is very useful to trigger the execution of specific actions
by sending intents. Fortunately, Rasa provides support for triggering between intentions
and actions. There are two types of trigger sources: built-in and user-defined.

Let's start by talking about the built-in triggers.

102 Handling Business Logic

Triggering actions by using built-in intents
Rasa allows developers to use a format such as /intent{"entity1": val1,
"entity2": val2} as a simplified way of defining intent and entities. We can use this
to test the bot. Another usage is to return payload to the system when a user clicks on a
button. This format is very similar to the user message in story.md; however, here it
must start with /.

RulePolicy gives the corresponding intents restat, back, and session_start
for the session-level actions action_start, action_back, and action_session_
start, and manages the mapping from intent to action so that session-level control can
be done when system gets the intents and triggers the corresponding actions.

As we mentioned before, Rasa supports a simplified way to define intents. Users can input
/restart, /back, and /session_start to input the intents of action_start,
action_back, and action_session_start, so that the system can map them to the
corresponding actions.

In the next section, we will talk about the custom triggers.

Triggering actions by using custom intents
In some use cases, developers want to make sure that a certain intent will always trigger
one or multiple actions no matter what dialogue state the system is in. In this situation,
we can use the rule function within RulePolicy. It is configured in stories.yml:

rules:

- rule: mapping from some_intent to some_action

 steps:

 - intent: some_intent

 - action: some_action

Here, if RulePolicy is initiated in the policy, when the user gets to the intent of some_
intent, RulePolicy makes it certain that some_action is triggered.

In the next section, we will talk about how to use forms to finish tasks.

Using forms to complete tasks 103

Using forms to complete tasks
A dialogue with the core target of completing a specific task can be considered as a
process to guide users to fill in a form:

1. Bot asks user what he or she wants.
2. User expresses his or her need (with intent and entities).
3. Bot looks for the right form with regard to the user intent and fills in the entity

information from user's input. If certain fields are still missing in the form, bot asks
user about the missing field with a certain strategy (order of fields).

4. User provides bot with information on the missing fields.
5. Bot fills in the entity information to the form and continues to ask for the next

missing field.
6. The process iterates until bot finds that the form is complete and starts to execute

the specific task.

We need to add RulePolicy into the configuration file so that Rasa can handle dialogue
management based on forms:

policies:

 - name: RulePolicy

Let's now start to discuss how to define a form.

Defining a form
A form in Rasa defines the information of all the slots required to perform the task of this
form. We need to give a name to the form and list all its slots. Before we introduce every
field we need to define, let me give you a sample form:

forms:

 weather_form:

 address:

 - entity: address

 type: from_entity

 date-time:

 - entity: date-time

 type: from_entity

104 Handling Business Logic

In the sample form, all the form definitions are under the forms key. In this case, we
only have one form, the name of the form is weather_form. The form defines two slots:
address and date_time.

Sometimes, extracting slot value from an NLU parse result is complex. For example, you
only want to use the value of a certain entity as the value of the slot when the intent is
equal to a certain value and use the value of another entity when it is not. In order to help
users more easily complete the work of extracting slot values from NLU parsing results,
Rasa provides slot mapping functions in the form definition. The slot mapping specifies
how to selectively extract the value of the slot from the NLU parsing result. Users can
define multiple slot mapping settings. In this case, both slots only have one for each.
The value of type of slot mapping is specific to the slot mapping type; in our case, it is
from_entity. It means we will use the value of an entity as the slot's value, but which
entity should we use? The entity key is used for specifying the source entity. Here, both
of the slot values come from entities with the same name. Rasa offers many slot mapping
solutions. Details can be found on Rasa's official documentation.

In the next section, we will talk about how to activate forms.

Activating a form
The easiest way to activate the form is to use the rule policy. We can use the rule policy
to set such a rule: when a specific intent appears, the corresponding form will be
automatically activated. Here is an example:

rules:

 - rule: activate form

 steps:

 - intent: weather

 - action: weather_form

 - active_loop: weather_form

In this example, if the user intent is weather, the action of weather_form will be
performed. The side-effect of this action (change to the dialogue state) is to enter the
active_loop named weather_form, the same as the form name we defined in
the previous example. In this way, the system will go into the loop process of slot filling
and enquiry.

In the next section, we will talk about how to use forms to execute actions.

Practice – building a weather forecast chatbot 105

Executing a form task
When all the slots requested by the form are filled, it is time to perform the form task (the
action you want to perform with the information collected by these forms). We can use a
rule to specify the settings we want. The following is an example:

- rule: submit form

 condition:

 # Condition that form is active.

 - active_loop: weather_form

 steps:

 - action: weather_form

 - active_loop: null

 - slot_was_set:

 - requested_slot: null

 # The action we want to run when the form is submitted.

 - action: action_weather_form_submit

Here, the rule defines that when the active_loop named weather_form is finished
and all the requested slots are filled (here, requested_slot: null), the action
action_weather_form_submit will be executed. All the business logic should be
implemented within action_weather_form_submit. In this case, it will call a third-
party API to get the weather information.

In the next section, let's do an exercise about what we have learned so far.

Practice – building a weather forecast chatbot
Here, we consolidate the knowledge we have learned so far and build a demo project on a
chatbot that can forecast the weather.

Let's talk about the functions of this bot first.

Designing the features of this bot
The chatbot can give users a weather forecast according to the user's input on a city
(Beijing, New York) and date (tomorrow, next Monday). We will use a form to implement
those features.

In the next section, we will show you how to implement such a bot in great detail.

106 Handling Business Logic

Implementing the bot step by step
Our project follows the Rasa official project structure, as shown in the following code
block:

.

├── actions

│ ├── actions.py

│ └── __init__.py

├── config.yml

├── credentials.yml

├── data

│ ├── nlu.yml

│ └── stories.yml

├── domain.yml

├── endpoints.yml

└── tests

In this project, actions/__init__.py and credentials.yml are empty. We here
introduce the content of the rest of the files.

Let's start with the NLU training file.

Defining NLU training data
In data/nlu.yml, we have training data for five intents: greet, goodbye, weather,
info_date, and info_address. In addition, in that training data, we have entities:
date-time and address.

We can easily understand the meaning from the intent name and the entity name. Part of
the training data is as follows (the full content of this file has already been provided to you
in the GitHub repository):

version: "2.0"

nlu:

 - intent: goodbye

 examples: |

 - Bye

 - Goodbye

 - intent: greet

 examples: |

Practice – building a weather forecast chatbot 107

 - Hello there

 - Hi

 - intent: weather

 examples: |

 - Display the weather in degrees Celsius

 - I want the weather of [Shanghai](address)[tomorrow]
(date-time)

 - intent: info_date

 examples: |

 - [Tomorrow] (date-time)

 - [The day after tomorrow](date-time)

 - intent: info_address

 examples: |

 - Tell me how about [Rome](address)

 - In [Seoul](address)

In the next section, let's talk about the settings of the domain.

Configuring the domain
The domain.yml file contains Rasa's domain setting. For this project, our domain
settings contain all the intents, entities, actions, and responses. We have also added the
slots date-time and address to remember date and city information. We define a
form (named weather_form) to do our weather query information collection job. Part
of the content of domain.yml is as follows (you can find the full content at https://
github.com/PacktPublishing/Conversational-AI-with-RASA//blob/
main/Chapter04/domain.yml):

intents:

 - goodbye

<-- we have omitted some similar items here. -->

entities:

 - address

 - date-time

<-- we have omitted the slots and responses field here. -->

actions:

 - utter_ask_address

<-- we have omitted some similar items here. -->

forms:

https://github.com/PacktPublishing/Conversational-AI-with-RASA//blob/main/Chapter04/domain.yml
https://github.com/PacktPublishing/Conversational-AI-with-RASA//blob/main/Chapter04/domain.yml
https://github.com/PacktPublishing/Conversational-AI-with-RASA//blob/main/Chapter04/domain.yml

108 Handling Business Logic

 weather_form:

 address:

 - entity: address

 type: from_entity

 date-time:

 - entity: date-time

 type: from_entity

In the next section, we will discuss the dialogue management part of this project: stories
and rules.

Defining stories and rules
The data/stories.yml file contains stories and rules. In this project, our stories are
used to trigger the greet and say goodbye function. We already explained these settings in
the previous chapter. Here is the concrete setting for the project:

version: "2.0"

stories:

 - story: greet

 steps:

 - intent: greet

 - action: utter_greet

 - story: say goodbye

 steps:

 - intent: goodbye

 - action: utter_goodbye

In another part, we will talk about rules. We use a rule to trigger the execution of form
weather_form by intent weather. Specifically, when the user expresses the intent
weather, our rule will activate the form weather_form. When all the required
information is gathered (when requested_slot: null), our rule will trigger the
running of action_weather_form_submit. The entire content of data/stories.
yml is as follows:

rules:

 - rule: activate weather form

 steps:

 - intent: weather

 - action: weather_form

Practice – building a weather forecast chatbot 109

 - active_loop: weather_form

 - rule: Submit form

 condition:

 # Condition that form is active.

 - active_loop: weather_form

 steps:

 - action: weather_form

 - active_loop: null

 - slot_was_set:

 - requested_slot: null

 # The action we want to run when the form is submitted.

 - action: action_weather_form_submit

In the next section, we will work on how to configure the pipeline and strategy.

Configuring the pipeline and strategy
The configurations of Rasa are stored in the config.yml file. In this project, we use
transformer-based components to classify intent and extract entities. In the policy part,
we use MemoizationPolicy, TEDPolicy, and RulePolicy. The full content of
config.yml is as follows:

version: "2.0"

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: LanguageModelFeaturizer

 model_name: "bert"

 model_weights: "rasa/LaBSE"

 - name: RegexFeaturizer

 - name: DIETClassifier

 epochs: 100

 learning_rate: 0.001

 - name: ResponseSelector

 epochs: 100

 learning_rate: 0.001

 - name: EntitySynonymMapper

 - name: FallbackClassifier

110 Handling Business Logic

policies:

 - name: MemoizationPolicy

 - name: TEDPolicy

 epochs: 100

 - name: RulePolicy

In the next section, we will talk about how to code our custom action for weather queries.

Creating a custom action
All the custom actions are defined in the actions/actions.py file. In this project, we
will define only one action: action_weather_form_submit. This action is used to
query weather conditions from a third-party service provider by using date and location
information specified by users.

Now we will show the key code snippets for you. To view the full code, please visit our
GitHub repository:

class ActionWeatherFormSubmit(Action):

 def name(self) -> Text:

 return "action_weather_form_submit"

 def run(self, dispatch, tracker, domain):

 city = tracker.get_slot("address")

 date_text = tracker.get_slot("date-time")

 date_object = text_to_date(date_text)

 if not date_object: # parse date_time failed

 msg = "Not support weather query for {}".
format([city, date_text])

 dispatch.utter_message(msg)

 else:

 dispatch.utter_message(templete="utter_working_on_
it")

 try:

 lat, lon = text_to_coordinate(city)

 weather_data = get_text_weather_date(lat, lon,
date_object, date_text, city)

 except Exception as e:

 exec_msg = str(e)

 dispatch.utter_message(exec_msg)

Practice – building a weather forecast chatbot 111

 else:

 dispatch.utter_message(weather_data)

 return []

In brief, this action will first try to parse the date information from the date-time slot (by
using text_to_date()). Then it will try to parse the city information from the address
slot. Finally (by using text_to_coordinate()), it will send a request to a third-party
weather service provider to get the weather conditions (by using get_text_weather_
date()) and send them to the user.

In the next section, we will discuss how to set up a web-based client for our project.

Setting up the web server for client UI
Normally, users interact with the Rasa server through a client. In this chapter, unlike
previous chapters, we will not use the Rasa shell anymore; in this project, we will use a
web-based client.

The web-based client has many advantages over the Rasa shell. For example, it is easier to
distribute to users (as long as users have a web browser) and generally has richer response
types (can display buttons and images sent from the Rasa server). More importantly, the
Rasa shell can only be used for local tests. It cannot be used by other people who cannot
access this computer physically. The web-based client is a production solution. If your
users have web browsers, they can use your bot service. Of course, the Rasa shell certainly
has its advantages. It can produce detailed logs, which is very handy for debugging. We
will cover this feature in Chapter 11, Debugging, Optimization and Community Ecosystem.

The core code of the client is as follows:

<body>

 <div id="webchat"/>

 <script src="webchat.js"></script>

 <script>

 WebChat.default.init({

 selector: "#webchat",

 initPayload: "Hello",

 interval: 1000,

 customData: {"userId": "123"},

 socketUrl: "http://127.0.0.1:5005",

 socketPath: "/socket.io/",

 title: "Weather Forcasting",

112 Handling Business Logic

 subtitle: "Demo",

 showCloseButton: true,

 fullScreenMode: false

 })

 </script>

</body>

Here, we give you some explanations on the key parameters in the code:

• initPayload: When the user first opens the client, the client will send the value
of this parameter (in our case, it is "Hello") as a message to Rasa. This message
will not be shown in the user interface, so from the user's view, it seems that Rasa
actively sends a message to users at the start.

• socketUrl: This parameter defines the address for the Rasa server.

• title: This parameter defines the main title of the chat window.

• subtitle: This parameter defines the subtitle of the chat window.

The webchat.js file loaded into the web page provides the JavaScript WebChat
class. The file comes from the rasa-webchat project at https://github.com/
botfront/rasa-webchat.

After loading the code, we will be able to get a chat widget in the lower-right corner of the
web page, as shown in the following diagram:

Figure 4.1 – A chat widget located in the lower-right corner of the web page

In the next section, we will start to train the models.

https://github.com/botfront/rasa-webchat
https://github.com/botfront/rasa-webchat

Practice – building a weather forecast chatbot 113

Training models via the command line
Because we followed Rasa's standard project structure, we can use Rasa's built-in
command-line tools to train models.

Users should open the terminal application of their operating systems. First, change
the working directory to the current Rasa project directory (in most operating systems,
the command that changes the working directory is cd). Second, type the following
command and execute it:

rasa train

After waiting for a few minutes, the training will be done. There will be a model
automatically saved as a zipped file in the models folder.

Now we have finished the training job, in the next section, we will run the whole
dialogue system.

Running the dialogue system
For running the whole dialogue system, we need to run three separate servers: Rasa
server, action server, and web client server. Let's see each of them in detail:

• Rasa server

To run the server, use the following command:

rasa run --cors "*"

The --cors "*" command is used to solve the cross-origin resource sharing
(CORS) problem between client and Rasa servers.

• Action server

We use a third-party weather forecasting API in this project, so we need to transfer
the API key through the environment variable, as shown in the following command:

OWM_KEY=<your-owm-key> rasa run actions

The <your-owm-key> key is the API key we can get from
https://openweathermap.org/.

• Web client server

Run the following command:

python -m http.server

https://openweathermap.org/

114 Handling Business Logic

This will start an HTTP-based server in the local 8000 port. We can visit http://
localhost:8000 in a browser to visit the chatbot.

In the next section, we will try to inspire you to do some cool things based on our
current work.

Extending this project
A weather forecast chatbot is just a simple example as a start. When we understand this
project better, we can add more features based on our needs. Here are some excellent
examples:

• Using a custom Natural Language Generation (NLG) server to add "Good
Morning", "Good Afternoon", and "Good Evening" according to the user's
current time

• Using an event broker mechanism to calculate the distribution of different cities and
dates from all the conversations generated from the chatbot users

Summary
In this chapter, we have introduced how to handle business logic. We first taught you
how to use fallbacks to handle situations where the system cannot process a user's needs.
Then we introduced the rule policy that can use predefined logic to execute a fixed action.
Finally, we introduced forms that can automatically interact with users to gather the
information that is needed by the task. We also built a weather forecast chatbot to help
you understand those concepts better.

In the next chapter, we will discuss how to handle chitchat and FAQs.

5
Working with

Response Selector
to Handle Chitchat

and FAQs
Most chatbots have simple FAQ and chitchat functions. Both types of functions involve
knowing how to choose an appropriate response to a user's request. These functions sound
simple, but in reality, they actually involve a lot of work. If we use one intent to represent
an FAQ or chitchat intent from the user and pair it with an action, the story will become
both complicated and inefficient. Rasa offers the Natural Language Understanding (NLU)
ResponseSelector component, which is specifically used for FAQ and chitchat tasks.

In this chapter, you will learn how to define a question and find its corresponding answer.
Additionally, you will learn how to configure Rasa to automatically identify a query (by
finding a question that is semantically closest to the query) and give the corresponding
answer. Finally, you will develop a practical understanding of these concepts with the help
of the hands-on exercise provided at the end of the chapter.

116 Working with Response Selector to Handle Chitchat and FAQs

In particular, in this chapter, we will cover the following topics:

• Defining retrieval intents – the questions users want to ask

• Defining responses – the answers to the questions

• Updating the configuration to use ResponseSelector

• Learning by doing – building an FAQ bot

Let's start by defining the user's problems.

Technical requirements
You can find all of the code-related files for this chapter in a directory named ch05 at
the following GitHub repository: https://github.com/PacktPublishing/
Conversational-AI-with-RASA.

Defining retrieval intents – the questions
users want to ask
First, we need to define the question and its corresponding intent. Note that the intent
name for the training data of ResponseSelector is different from the ordinary intent
names that we have discussed in Chapter 2, Natural Language Understanding in Rasa.
ResponseSelector needs to follow the <group>/<intent> format in order to
name the intents. This also explains why even ordinary intents should not have / as part
of their name.

Here is an example:

nlu:

 - intent: chitchat/ask_name

 examples: |

 - What is your name?

 - Who are you?

 - How can I call you?

 - intent: chitchat/ask_weather

 examples: |

 - What's the weather like on your side?

 - It's sunny and clear here on my side, what about you?

https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://github.com/PacktPublishing/Conversational-AI-with-RASA

Defining responses – the answers to the questions 117

You can see that the training data for ResponseSelector is in the same format
as the intent training data except for the intent names. The <group> part of the
<group>/<intent> format is called a retrieval intent in Rasa. Here, the two intents,
chitchat/ask_name and chtchat/ask_weather, both belong to the chitchat
retrieval intent.

Now that we have a clear idea of how to define the questions, we need to understand how
to answer them. In the next section, we will discuss this in more depth.

Defining responses – the answers to the
questions
First, we put the data of the answers inside the responses field in domain.yml.

Here is an example:

responses:

 utter_chitchat/ask_name

 - text: My name is Sarah, a Rasa documentation bot.

 utter_chitchat/ask_weather

 - text: My place is always sunny and clear.

In Rasa, every intent with the name of <intent_name> has a response called
utter_<intent_name> as the answer. In this way, there is a connection between the
question and the answer. Although in this example, we use plain text responses, you can
respond with richer formats. Because these answers are defined using Rasa's responses,
you can use any features supported by the responses (including but not limited to pictures
as a reply, a channel-specific reply, or custom reply content).

Now that the question and the corresponding answer are ready, in the next section, we
will discuss how to configure Rasa to match the user's question in general and how to
correctly reply to the user with the relevant answer.

118 Working with Response Selector to Handle Chitchat and FAQs

Updating the configuration to use
ResponseSelector
In order to perform an intelligent categorization of the questions, we need to use
the ResponseSelector NLU component to train a model with existing training
data. We need to add the ResponseSelector component to the pipeline. The
ResponseSelector component depends on the featurizer and intent classifier, so make
sure you place it after these components in your pipeline, as follows:

pipeline:

 - name: XXXFeaturizer # replace this with a real Featurizer

 - name: XXXClassifier # replace this with a real Classifier

 - name: ResponseSelector

In order to get the right answer based on the result from ResponseSelector, we need
to initiate RulePolicy and implement a rule to do the mapping. Here is an example:

rules:

 - rule: map to chitchat

 steps:

 - intent: chitchat

 - action: utter_chitchat

Here, we create a rule mapping between the chitchat retrieval intent and the
utter_chitchat action (which is a template). When the dialogue system is running,
RulePolicy will automatically trigger the utter_chitchat action when it
encounters the chitchat intent.

At this point, we have discussed all of the theoretical parts. To check your understanding,
we have prepared a special hands-on project for you in the next section.

Learning by doing – building an FAQ bot
In this section, the practical example has been designed to develop your practical
understanding with regard to the concepts covered in the preceding sections.

We will create an FAQ bot based on a homemade toy-level dataset. This FAQ bot will
answer questions for fresh graduates about participating in an interview at The Acme
Corporation (a fictitious company from https://en.wikipedia.org/wiki/
Acme_Corporation).

https://en.wikipedia.org/wiki/Acme_Corporation
https://en.wikipedia.org/wiki/Acme_Corporation

Learning by doing – building an FAQ bot 119

What are the features of our bot?
In this section, we will list all the functions this exercise project should provide. Let's start
with the greeting and goodbye messages.

Handling greetings and goodbyes
Example #1: The bot responds to the user's greetings and provides a description of its own
functions:

User: Hello!

Bot: Hello, I am Silly. I am a Rasa-based FAQ bot. I can help
you with answering questions about the recruitment of fresh
graduates for The Silly Company.

Example #2: The bot echoes goodbye to the user:

User: Bye bye!

Bot: Goodbye!

Handling FAQs about interviews
The bot can answer many questions. Here, I will introduce you to some of them.

Example #1: Answer questions about interview preparation:

User: What documents do I need to bring to the interview?

Bot: During the interview, please bring a valid certificate
that can prove your identity. For positions with special
requirements, please bring the original and copy of the
certificate that can prove your professionalism.

Example #2: Answer questions about how to obtain interview results:

User: How to check the interview result?

Bot: We will notify you of the result of the interview by email
or phone.

Although these features seem to be many, the implementation is not as complicated as you
might think. In the next section, we will take you into the inside of this bot to examine
how it is implemented.

120 Working with Response Selector to Handle Chitchat and FAQs

How can we implement it?
Let's follow the official Rasa project structure:

.

├── config.yml

├── credentials.yml

├── data

│ ├── stories.yml

│ ├── rules.yml

│ └── nlu.yml

├── domain.yml

├── endpoints.yml

└── models

All the Rasa commands expect the proceeding project layout. With this layout, you can
run most commands (such as rasa train, rasa shell, and rasa test) without
any additional configuration.

Let's start with the train data.

Creating the NLU training data
In our project, all of the training questions are stored in the data/nlu.yml file. In this
file, we have training data for two intents: greet and goodbye. To handle FAQs, we also
need a retrieval intent: faq. We will create sub-intents for each question under the faq
retrieval intent.

A part of the training data content (the full content has already been provided to you in
the GitHub repository) is as follows:

version: "2.0"

nlu:

<-- greet and goodbye intents are omitted here. -->

 - intent: faq/interview_paperwork

 examples: |

 - What documents do I need to bring to the interview?

 - intent: faq/interview_result

 examples: |

 - How to check the interview result?

<-- we have omitted another sub-intents here. -->

Learning by doing – building an FAQ bot 121

Our question samples are now in place. Next, we will define the answers to those
questions in the domain.

Creating the story data
Stories are stored in data/stories.yml file. The stories in this project are simple, that
is, the greet intent will trigger the utter_greet action, and the goodbye intent will
trigger the utter_goodbye action. The corresponding stories are as follows:

version: "2.0"

stories:

 - story: greet

 steps:

 - intent: greet

 - action: utter_greet

 - story: say goodbye

 steps:

 - intent: goodbye

 - action: utter_goodbye

Next, we will discuss the rules that you need to follow when mapping retrieval intents to
responses.

Creating rules for the response users' questions
Rules are stored in the data/rules.yml file. In this project, we only have one rule, that
is, to map a retrieval intent to a response. The corresponding rule is as follows:

rules:

 - rule: respond to FAQs

 steps:

 - intent: faq

 - action: utter_faq

Next, we will define the answers to those questions in the domain.

122 Working with Response Selector to Handle Chitchat and FAQs

Configuring the domain
Domain settings are stored in the domain.yml file. In this chapter, the settings are
essentially the same as those that were introduced in previous chapters. The slight
difference is that this chapter adds some answers to the responses field, which
correspond to the questions introduced in the Creating NLU training data section. The
outline of the domain file is as follows:

version: "2.0"

intents:

 - goodbye

 - greet

 - faq

responses:

 utter_greet:

 - text: Hello, I am Silly. I am a Rasa-based FAQ bot. I
can help you with answering questions about the recruitment of
fresh graduates for The Silly Company.

 utter_goodbye:

- text: Goodbye!

 utter_faq/interview_paperwork:

 - text: During the interview, please bring a valid
certificate that can prove your identity. For positions with
special requirements, please bring the original and copy of the
certificate that can prove your professionalism.

 utter_faq/interview_result:

- text: We will notify you of the result of the interview by
email or phone.

 <-- we have omitted some responses here. -->

actions:

 - utter_goodbye

 - utter_greet

 - utter_default

 - utter_faq

In this domain, the responses with the utter_faq/interview_paperwork key and
the utter_faq/interview_result key answer the corresponding questions (faq/
interview_paperwork and faq/interview_result).

In the next step, we will configure Rasa so that it can perform the functions we want.

Learning by doing – building an FAQ bot 123

Configuring the pipelines and policies
The configurations of the pipelines and policies are stored in the config.yml file. In the
pipeline part, we need to ensure that the ResponseSelector component is included.
In the policies field, we need to make sure that the RulePolicy is included. The
complete content of the config.yml file is as follows:

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: LanguageModelFeaturizer

 model_name: bert

 model_weights: "rasa/LaBSE"

 - name: "DIETClassifier"

 epochs: 100

 learning_rate: 0.001

 - name: ResponseSelector

policies:

 - name: MemoizationPolicy

 - name: TEDPolicy

 - name: RulePolicy

The pipeline part is the classical NLU pipeline for English (with BERT as
the core model). The policies part uses a combination of TEDPolicy,
MemoizationPolicy, and RulePolicy, which have already proved to be useful for
dialogue management.

At this point, all the data and configurations are ready. In the next step, we will start
training the model.

124 Working with Response Selector to Handle Chitchat and FAQs

Training models
We will use the command-line tool that comes with Rasa for model training. The specific
steps are as follows. Open a command-line Terminal in the project directory and enter the
following command:

rasa train

After waiting for the completion of the command, the training of the model is over. The
newly generated model file will be located in the models directory under the project
directory.

In the next section, we will use Rasa's own tools to start the service and make inferences.

Running the Rasa server and using a client to make inferences
In order to reduce the complexity of the deployment, in this project, we will use Rasa's
built-in rasa shell command as the client.

When rasa shell starts, it will also start the Rasa server in the background. Therefore,
there is no need to start the Rasa server independently. Additionally, since custom actions
are not used in this project, there is no need to start the Rasa action server.

In order to run the Rasa shell instance, open the Terminal application in the project
directory and type in the following command:

rasa shell

Once the model has been loaded by rasa shell, we can interact with the bot in the
shell command line:

Your input -> How to check the interview result?

We will notify you of the result of the interview by email or
phone.

Congratulations! You have successfully made an FAQ bot. Now you should have a deeper
understanding of how to define questions and answers and how to configure Rasa to
choose an appropriate answer to the user's question.

Summary 125

Summary
In this chapter, you learned to use ResponseSelector to handle chitchat and FAQs.
This usually requires three steps. First, you need to define retrieval intents, given enough
samples about the questions that users might ask. Note that the retrieval intents are
slightly different from ordinary intents (if you do not remember the differences, please
try to review this chapter). Second, you need to define your responses, that is, the answers
to the questions. Remember that there is a rule about how to pair the answers with the
questions. Third, you need to update the configuration (both in the pipeline field and
the polices field) to use ResponseSelector and RulePolicy to make the bot
work correctly.

In the next chapter, we will examine how to use knowledge base actions to handle
knowledge base question answering.

6
Knowledge Base

Actions to Handle
Question Answering

In the previous chapter, we introduced, in detail, the process of using
ResponseSelector to handle chitchat and FAQs. This chapter will teach you how to
deal with more complex question answering problems: referential resolution and dynamic
query. Referential resolution refers to correctly parsing the pronouns (such as it, the first,
and the last) into corresponding concrete objects. The dynamic query problem means that
the query result might change rapidly. It might be different each time, so it is impossible to
use fixed reply content, as we did in the previous chapter.

In this chapter, you will learn how to create a knowledge base that can be used for
answering questions. Additionally, you will learn to customize knowledge base actions,
learn how referential resolution (mapping a mention to an object) works, and how to
create a knowledge base. Finally, you will develop a practical understanding of these
concepts with the help of the hands-on exercise provided at the end of this chapter.

128 Knowledge Base Actions to Handle Question Answering

In particular, in this chapter, we will cover the following topics:

• Why we need knowledge base actions – understanding the problems we want
to solve

• How to use knowledge base actions

• How to customize knowledge base actions

• Learning by doing – building a knowledge-based music query chatbot

Let's begin by gaining an understanding of the problems we want to solve.

Technical requirements
You can find all the files for this chapter inside the ch06 directory of the GitHub
repository at https://github.com/PacktPublishing/Conversational-AI-
with-RASA.

A knowledge base action is an experimental feature
At the time of writing (Rasa version 2.5), the knowledge base action that we
are discussing here is still an experimental feature. The functionality might be
changed, or (although unlikely, it is still possible) it can be removed in the future.

Why do we need knowledge base actions?
One of the common challenges you face when building a chatbot is that users might
not refer to things using names but with pronouns such as "it," "this," and "that" or "the
previous one" and "the second one." Here is an example:

User:

 Do you have any recommended songs for me?

Bot:

 I find the following songs:

 1: Billie Jean

 2: The Shape of My Heart

 3: Like a Rolling Stone

User:

 Which album is the first song?

Bot:

 "Billie Jean" is from Michael Jackson's album "Thriller".

https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://github.com/PacktPublishing/Conversational-AI-with-RASA

How do you use knowledge base actions? 129

In the preceding example, User refers to Billie Jean as the first song.
This pattern is common in spoken language, especially when the name of the item is
uncommon (for example, IKEA's "FRAKATA Carrier Bag") or the name is too long (for
example, IKEA's "MACKAPÄR Bench with storage compartments white 100x51 cm"). In
order to be able to correctly handle this kind of dialogue that uses referents to represent
objects, the dialogue management system needs to remember the messages that were
previously sent to the user (in this case, it is the song list) in order to correctly extract the
corresponding objects from these pronouns.

In real-life scenarios, users will also ask about the object's properties, such as the album
name of a song or the average cost per person at a restaurant. A knowledge base on music
and restaurants is necessary to answer these kinds of questions from the user. However, in
some domains, this information is dynamic and keeps changing all the time, for example,
the price of hotels or plane tickets. Therefore, all of this information cannot be hardcoded.

In the next section, we will introduce a knowledge base action, which is a specially
designed feature to handle those problems.

How do you use knowledge base actions?
To tackle the challenges that we introduced in the previous section, Rasa can be integrated
with a knowledge base via a knowledge base action. A knowledge base action is a special
action that has been developed to handle referential resolution and queries on objects and
their properties.

In general, to use knowledge base actions, you need to do the following:

• Create a knowledge base from where the bot can retrieve information that will be
used to answer the questions that have been asked.

• Create a knowledge base action using Rasa SDK, which will query the knowledge
base according to the user's inputs and reply with relevant answers.

• Define some Natural Language Understanding (NLU) data so that users can
trigger the knowledge base action via the inputs.

• Modify your knowledge base actions to make the responses more human-like.

Let's start by defining a knowledge base.

130 Knowledge Base Actions to Handle Question Answering

Creating a knowledge base
A knowledge base stores the data that is used to answer a user's questions. It can be used
to store data with many complicated structures (for instance, a knowledge base about
movies could include the directors, actors, showtime, awards won, film companies, box
office revenue, and more). Here, we will use the built-in InMemoryKnowledgeBase.
As the name implies, InMemoryKnowledgeBase is a simple knowledge base storage
class that puts all data into memory. Although this will make it impossible for you to
store knowledge base data that exceeds the memory size, and means that you cannot store
complicated data structures, it is recommended that you use it for smaller applications
because it is simple to use and does not require any third-party library support. For
large-scale applications, thanks to the powerful extensibility of Rasa, you can create and
use your own custom knowledge base. We will explain how to do this, in detail, in the
Learning by doing – building a knowledge-based music query chatbot section of this chapter.

To use InMemoryKnowledgeBase, developers need to provide knowledge base data
in a JSON file. The following example contains data on songs and singers. Every type of
object in the knowledge base should have a key. For example, here, the keys are song
and singer. Additionally, every type of object needs to be mapped to a list of objects, as
shown in the following example:

{

 "song": [

 {

 "id": 0,

 "name": "Billie Jean",

 "singer": "Michael Jackson",

 "album": "Thriller",

 "style": "Rock"

 },

 <-- we have omitted some similar items here. -->

],

 "singer": [

 {

 "id": 0,

 "name": "Bob Dylan",

 "gender": "male",

 "birthday": "1941/05/24"

},

<-- we have omitted some similar items here. -->

How do you use knowledge base actions? 131

]

}

In the default implementation of InMemoryKnowledgeBase, just as in the preceding
example, every object should, at the very least, have name and id properties.

With the data file (named data.json), developers can create an instance of
InMemoryKnowledgeBase. This knowledge instance will pass to a knowledge base
action as an argument.

In the next section, we will learn how to create a knowledge base action.

Creating a custom knowledge base action
Developers can create their own custom knowledge base action by inheriting the
ActionQueryKnowledgeBase class and then transferring the knowledge base instance
as a parameter to the constructor function. This is shown in the following example:

from rasa_sdk.knowledge_base.storage import
InMemoryKnowledgeBase

from rasa_sdk.knowledge_base.actions import
ActionQueryKnowledgeBase

class MyKnowledgeBaseAction(ActionQueryKnowledgeBase):

 def name(self) -> Text:

 return "action_response_query"

 def __init__(self):

 knowledge_base = InMemoryKnowledgeBase("data.json")

 super().__init__(knowledge_base)

Here, we use the data.json file as the data source to create an instance of
InMemoryKnowledgeBase, and then transfer it as the knowledge base instance to the
constructor function of ActionQueryKnowledgeBase.

Now, we can put our own action into the domain configuration:

actions:

 - action_response_query

Now we have a knowledge base and a knowledge base action. The final piece of the puzzle
is to define some NLU data and stories to allow users to perform a knowledge base action
via their input. We will cover this topic in the next section.

132 Knowledge Base Actions to Handle Question Answering

Defining NLU data and stories to perform queries
from users
In order to let the chatbot know that the user wants to do a knowledge base query,
developers need to define an intent to express this. Here, we define the intent as
query_knowledge_base.

Note that ActionQueryKnowledgeBase is able to handle two types of requests
from users:

• Users who want to get the list of a specific object type, with or without any
filtering conditions

• Users who want to get a specific attribute of an object

Both types of requests should be under the intent of query_knowledge_base. Here is
an example of the NLU data:

version: "2.0"

nlu:

 - intent: query_knowledge_base

 examples: |

 - List me some [songs](object_type)

 - List me some [singers](object_type)

 - List me some [songs](object_type) of [Sting](singer)

 - [That song](mention) belongs to what [album](attribute)

 - [Album](attribute) of [First](mention)

 - [Album](attribute) of [Billie Jean](song)?

 - [Birthday](attribute) of [Lady Gaga](singer)

In the example NLU data, we have three different entity types. They are the key to
performing a knowledge-based query:

• object_type: This gives the information type of what the user wants to query.
For example, when a user says List me some songs the user wants to query
songs. Therefore, we need to mark songs as an entity of object_type, so our
bot knows about the user's interest in the query. Additionally, we need to convert
songs into song by using synonym mapping. This is because our knowledge base
has a key named song but not songs.

How do you use knowledge base actions? 133

• mention: This gives indirect information about what the user wants to specify.
In daily language expressions, we often use this, the first, the last, or
similar words to refer to the object we are interested in. For example, when a user
says What album did the first one belong to? , in this query, the
user wants to query an attribute of a song, and this song is the first song of our song
list that we showed to the user in the earlier conversational turns. We need to mark
the first one as an entity of mention, so our bot can resolve this indirect
information to the song.

• attribute: This specifies the information (or attribute) that the user wants to
know about the object. For example, when a user says What is the album of
Billie Jean?, no doubt, the user wants to know the album (that is, the attribute)
of Billie Jean (that is, the object). In order for our bot to get such information
(the attribute), we need to mark the album as an entity of attribute.

Remember to modify the domain.yaml file. Then, add the following configurations into
the domain file:

entities:

 - object_type

 - mention

 - attribute

slots:

 object_type:

 type: any

 mention:

 type: any

 attribute:

 type: any

Finally, we need to add the corresponding story in story.yml to make sure the
action_query_knowledge_base action can be executed when the user expresses the
intent of query_knowledge_base. This is shown in the following example:

stories:

 - story: knowledge query

 steps:

 - intent: query_knowledge_base

 - action: action_response_query

134 Knowledge Base Actions to Handle Question Answering

We have now learned how to define NLU data and stories to trigger knowledge base
actions. In the next section, we will explain how knowledge base actions work, that is, how
a knowledge base action uses NLU data.

How do knowledge base actions work?
Interestingly, ActionQueryKnowledgeBase needs both the current extracted entity
information and the slot from the previous conversations to understand the query target.

How do you query objects?
For query objects from the knowledge base, the user's request should contain the object
type. Let's take a look at an example:

Do you have any recommended songs for me?

This question contains the target query object: songs. The NLU module should
understand this sentence as Do you have any recommended [songs](object_
type) for me, and songs should be mapped to the song object type. The system will
then be able to query the song knowledge base and list its entities.

If the user inputs something such as Give me some songs from Michael
Jackson, then the user wants to have a song list from the object that has the singer
attribute as Michael Jackson. NLU will understand this sentence as Give me some
[songs](object_type) from [Michael Jackson](singer). Here, the singer
entity with the value of Michael Jackson gives the filter condition for the query.

How do you query the attributes of an object?
If a user wants to get some specific information about one particular object, the user's
request should contain both the object information and the attribute of interest. For
example, the user might input (after NLU processing) the following:

Which [album](attribute) does [Billie Jean](song) belong to?

Here, the user wants to query the album (attribute) of the Billie Jean (object)
song. The system should extract the song type entity with the value of Billie Jean
and the attribute type entity with the value of album. The entity of the song type
is used to target the object, and the entity of the attribute type is used to target the
attribute of that object.

How do you use knowledge base actions? 135

How do you perform reference resolution?
In real-life situations, sometimes, users will not directly use the song name to refer to
the object. They might use something like an ordinal number or a pronoun to refer to
the object that already appears in the previous conversation (messages), as shown in the
following example:

Bot:

 I find the following songs:

 1: Billie Jean

 2: The Shape of My Heart

 3: Like a Rolling Stone

User:

 Which album does the first one belong to?

It is the task of the action to be able to correctly map those references (in
this example, this is the first one) to the object in the knowledge base.
ActionQueryKowledgeBase can carry out two types of reference resolution:

• An ordinal number reference, for example, the first one

• A pronoun reference, for example, this one

Ordinal number references
An ordinal number reference means that an object is referred to by its position in the list.
For example, take a look at the following:

User:

 Do you have any recommended songs for me?

Bot:

 I find the following songs:

 1: Billie Jean

 2: The Shape of My Heart

 3: Like a Rolling Stone

User:

 Which album is the first song?

136 Knowledge Base Actions to Handle Question Answering

Here, the user inputs the first song to refer to Billie Jean. Some other examples
of ordinal number references include the second one, last one, and any. Normally,
the user uses an ordinal number reference when the system outputs a list of results in the
previous round of conversation. To resolute/map the ordinal numbers to a real object, we
need to set up a mapping relationship in ActionQueryKnowledgeBase. The default
settings (that is, the ordinal_mention_mapping attribute of the KnowledgeBase
class) are as follows:

{

 "1": lambda l: l[0],

 "2": lambda l: l[1],

 "3": lambda l: l[2],

 "4": lambda l: l[3],

 "5": lambda l: l[4],

 "6": lambda l: l[5],

 "7": lambda l: l[6],

 "8": lambda l: l[7],

 "9": lambda l: l[8],

 "10": lambda l: l[9],

 "ANY": lambda l: random.choice(l),

 "LAST": lambda l: l[-1],

}

This ordinal number mapping dictionary maps the ordinal number in a string type to an
object in the list. For example, the lambda l: l[0] lambda function maps the string
of 1 to the object with an index of 0 in the list, which is the first object in the list.

We can see from the dictionary that the ordinal number mapping dictionary does not
contain keys such as the first one. Developers need to define the entity value
mapping to map the different formats of ordinal number references from user expressions
to the standard format. For example, we need to map the first one to 1 and the
last one to LAST. Developers can define the NLU entity synonym mapping to achieve
this. For example, take a look at the following:

nlu:

 - synonym: '1'

 examples: |

 - The first one

 - First

 - Number one

How do you customize knowledge base actions? 137

Although the NLU module detects that First is a reference, it can still use the entity
synonym mapping to map First to 1. Then, ActionQueryKnowledgeBase can map
First to the target object of Billie Jean.

Other references
When discussing a specific object, people often do not use the name of the object. Instead,
they use pronouns such as "it", "that one," and more. Let's take a look at an example:

User:

 Do you have any recommended songs for me?

Bot:

 I find the following songs:

 1: Billie Jean

 2: The Shape of My Heart

 3: Like a Rolling Stone

User:

 Which album is the first song?

Bot:

 "Billie Jean" is from Michael Jackson's album "Thriller".

User:

 Which year was it published?

When a user says Which year was it published, here, it refers to
Billie Jean. NLU detects that the value of mention is it; therefore,
ActionQueryKnowledgeBase will map the mention entity to the object that was last
mentioned: Billie Jean.

How do you customize knowledge base
actions?
The default knowledge base action has several disadvantages. First, the message returned
to the user is not very user-friendly, the reply format is fixed, and it does not have any
personality. Second, the built-in memory-based knowledge base is limited by the size of
the memory and cannot support a very large-scale knowledge base. Additionally, there
is no way to modify the content of the knowledge base externally in real time. In the
following sections, we will solve these problems one by one.

138 Knowledge Base Actions to Handle Question Answering

Modifying ActionQueryKnowledgeBase to customize
the behavior
Here, we introduce how to customize the output message from
ActionQueryKnowledgeBase. This is especially important for Rasa developers
who use multiple languages, as the default return message is always English.

Custom ways to express the object list
When a user requests the bot system to return the list of objects, utter_objects()
will be called. The function of utter_objects() is to return the object list to the user.
Here is an example in default condition:

Found the following objects of type 'song': 1: Billie Jean 2:
The Shape of My Heart 3: Like a Rolling Stone

If no object is found, the default response will be like this:

I could not find any objects of type 'song'.

Usually, this kind of default response is not suitable for use in a commercial product.
We must return the response content that best fits the context. This can be achieved by
customizing utter_objects().

Custom ways to express the attribute of an object
When a user requests the bot system to return a specific attribute of some object, utter_
attribute_value() will be called. This function returns the query results to the user.

If the target attribute is found, the default response will be like this:

'Billie Jean' has the value 'Thriller' for attribute 'album'.

If the attribute is not found, the default response is as follows:

Did not find a valid value for attribute 'album' for object
'Billie Jean'

Of course, we also need to customize utter_attribute_value() to modify the
response content here.

How do you customize knowledge base actions? 139

Customizing InMemoryKnowledgeBase
InMemoryKnowledgeBase inherits the KnowledgeBase class. We can overload the
following functions to implement a custom InMemoryKnowledgeBase:

• get_key_attribute_of_object(): This changes the key attribute of the
object in the knowledge base.

• get_representation_function_of_object(): This changes the way you
can express the object to users.

• set_ordinal_mention_mapping(): This changes how you can map the
mention to the object in the list.

First, let's take a look at how to get the key attribute of an object.

Changing the key attribute of an object
In order to track the last object that the user mentioned, we need to store a key attribute
for the object. Each object should have a key attribute that is globally unique, just like the
keys in a relational database. By default, the name of the key attribute is id. Developers
can call set_key_attribute_of_object() to modify it.

Changing the way to show objects to users
First, let's figure out how the knowledge base action represents an object to the user.
Then, we will figure out how to change it. Let's view an example restaurant, as follows:

{

"id": 1,

"name": "Italian World",

"cuisine": "pizza",

"private_room": false,

"price-range": "cheap"

}

When a user requests the bot system to output all the restaurants, we do not necessarily
need to output all the details of the restaurants. Developers should give a simple,
meaningful, and unique representation. In fact, in most circumstances, the representation
will be the name of the object.

140 Knowledge Base Actions to Handle Question Answering

Here, get_representation_function_of_object() returns a function that
maps the object to its representation. By default, the value of the representation is
lambda obj: obj["name"], which is the object name. When there is no name
attribute for the object, or there is ambiguity in the name attribute, developers should
call set_representation_fuction_of_object() to modify it.

Changing the mapping from a mention to an object
Ordinal mention mapping is used to map an ordinal number reference, for example, the
second one, to an object in the list. By default, ordinal mention mapping is defined as
follows (this can be found in the set_ordinal_mention_mapping() method of the
ActionQueryKowledgeBase class):

{

 "1": lambda l: l[0],

 "2": lambda l: l[1],

 "3": lambda l: l[2],

 "4": lambda l: l[3],

 "5": lambda l: l[4],

 "6": lambda l: l[5],

 "7": lambda l: l[6],

 "8": lambda l: l[7],

 "9": lambda l: l[8],

 "10": lambda l: l[9],

 "ANY": lambda l: random.choice(l),

 "LAST": lambda l: l[-1],

}

Developers can set the mapping relationship by calling the set_ordinal_mention_
mapping() function of the knowledge base class (using the mapping dictionary as
input). Under normal circumstances, the default settings are able to cover most occasions.
Unless you know what you are doing, it is not recommended that you modify the
mapping relationship.

Building your own knowledge base
When the volume of data is too large or the data structure is too complicated, developers
may need to create a custom knowledge base. This is done by inheriting KnowledgeBase
and implementing the get_objects(), get_object() and get_attributes_
of_object() methods.

Learning by doing – building a knowledge-based music query chatbot 141

The get_objects() method is used to query the knowledge base for objects of the
given type (for example, the object_type entity/slot), and filter the objects by the
attributes (that is, the attribute entity/slot) if any attributes are given.

The get_object() method is used to return the object of the given type (the
object_type entity/slot) that matches the given object identifier, that is, the key
attribute or the string representation of the object (by default, this is the name field of
the object).

The get_attributes_of_object() method is used to return a list of all of the
attributes that belong to the provided object type.

In the next section, we will use what we have learned so far to carry out some exercises.
We will define a new knowledge base on our own.

Learning by doing – building a knowledge-
based music query chatbot
We have designed this section to enhance your understanding of knowledge base actions.
We will create a QA bot based on a homemade toy-level knowledge base. This QA robot
will answer questions regarding music: songs, albums, and singers.

What are the features of our bot?
In this section, we will introduce the characteristics of our robot. Its features can be
divided into two types: one is the unconstrained query, and the other is the constrained
query (or with filter conditions). The former does not make any constraints or filters
on the query object, such as list all singers. The latter has clear constraints, such as List
all-male singers born in 1980, where born in 1980 and male are both constraints.

To begin, let's discuss the unconstrained query.

Querying the list of objects and asking for the attributes of the
specified object
Example #1: Search for songs and ask for the album attributes of the specified song
(via mention):

User:

 List me some songs

Bot:

 Find the following songs:

142 Knowledge Base Actions to Handle Question Answering

 1: Billie Jean

 2: Like a Rolling Stone

 3: The Shape of My Heart

User:

 What is the first album?

Bot:

 The album of Billie Jean is Thriller.

Example #2: Query the singer and ask for the birthday attribute of the specified singer
(by name):

User:

 List me some singers

Bot:

 Find the following singers:

 1: Bob Dylan

 2: Michael Jackson

 3: Lady Gaga

 4: Sting

User:

 The birthday of Michael Jackson

Bot:

 The birthday of Michael Jackson is 1958/08/29.

In this section, we illustrated that our robot can return a list of objects and the attributes
of a given object. In the next section, we will demonstrate that our robot can return a list
of objects with constraints.

Querying a list of objects that meet specific attribute requirements
Example #1: Query the list of songs and request that the singer attribute (that is, the
singer) of the song is Jay Chou:

User:

 List me some songs of Lady Gaga

Bot:

 Find the following songs:

 1: Poker Face

Learning by doing – building a knowledge-based music query chatbot 143

Example #2: Query the list of singers and add a requirement that the singer's gender
attribute is male:

User:

 List some male singers

Bot:

 Find the following singers:

 1: Bob Dylan

 2: Michael Jackson

 3: Sting

How do we implement the bot?
Let's follow the official Rasa project structure:

├── actions

│ └── actions.py

├── config.yml

├── credentials.yml

├── data

│ ├── stories.yml

│ └── nlu.yml

├── domain.yml

├── endpoints.yml

├── neo4j_knowledge_base.py

└── models

In this chapter, the project directory is almost the same as the official standard directory
layout of Rasa. The only difference is that there is an extra file in the directory of this
chapter: neo4j_knowledge_base.py. This file is used to implement a Neo4j-based
knowledge base, which we will discuss later.

To understand how to implement our robot, let's start with the training data.

144 Knowledge Base Actions to Handle Question Answering

Creating the NLU training data
In our project, all of the training NLU data is stored in the data/nlu.yml file. In this
file, we need some training data for intent: query_knowledge_base. We will use this
intent to express that users want to query something in the knowledge base.

Part of the training data content (the full content has already been provided to you in the
GitHub repository) is as follows:

version: "2.0"

nlu:

 - intent: query_knowledge_base

 examples: |

 - List me some [songs](object_type)

 - List me some [singers](object_type)

 - List me some [songs](object_type) of [Sting](singer)

 - List me [songs](object_type) of [Bob Dylan](singer)

 - List [songs](object_type) of [Lady Gaga](singer)

 - List me [songs](object_type) of [Lady Gaga](singer)

 - [That song](mention) belongs to what [album](attribute)

 - Who is the [singer](attribute) of [the previous song]
(mention)

 - [Album](attribute) of [First](mention)

 - [Album](attribute) of [Billie Jean](song)?

 - [The Shape of My Heart](song) belongs to what [album]
(attribute)?

 - [Poker Face](song) is in what [album](attribute)?

 - [Birthday](attribute) of [First](mention)

 - [Birthday](attribute) of [Lady Gaga](singer)

In the preceding NLU training data, we have created some training examples to represent
the questions that users might ask our bot.

The next step is to create story data to make sure that the query_knowledge_base
intent can always trigger the execution of the knowledge base action.

Learning by doing – building a knowledge-based music query chatbot 145

Creating the story data
Stories are stored in the data/stories.yml file. Stories in this project are simple, that
is, the query_knowledge_base intent will trigger the action_response_query
action, which is the knowledge base action that will be defined later in this chapter. The
corresponding stories are as follows:

version: "2.0"

stories:

 <-- we have omitted some stories for greet and goodbye here.
-->

 - story: knowledge query

 steps:

 - intent: query_knowledge_base

 - action: action_response_query

Next, we will learn about the configuration of the domain.

Configuring the domain
Domain settings are stored in the domain.yml file. In this chapter, the settings are,
essentially, the same as those that were introduced in previous chapters. We need to add
all the slots and entities that are used by the knowledge base actions. An outline of the
domain file is as follows:

intents:

 - goodbye

 - greet

 - query_knowledge_base:

 use_entities: []

entities:

 - object_type

 - mention

 - attribute

 - object-type

 - song

 - singer

 - gender

slots:

146 Knowledge Base Actions to Handle Question Answering

 attribute:

 type: any

 gender:

 type: any

 mention:

 type: any

 object_type:

 type: any

 singer:

 type: any

 song:

 type: any

responses:

 <-- we have omitted all the responses here. -->

actions:

 - action_response_query

 <-- we have omitted other actions here. -->

If the name of your knowledge base action is not action_query_knowledge_base,
which is the default one, then you need to add the following content to the slots field of
the domain:

 knowledge_base_last_object:

 type: any

 knowledge_base_last_object_type:

 type: any

 knowledge_base_listed_objects:

 type: any

 knowledge_base_objects:

 type: any

Our customized knowledge base action will use those slots. If those slots are not defined,
our knowledge base action will not work correctly.

In the next step, we will configure the pipelines and policies for Rasa.

Learning by doing – building a knowledge-based music query chatbot 147

Configuring the pipelines and polices
The configurations of the pipelines and policies are stored in the config.yml file. In
this project, the pipeline settings and policy configurations are nothing special. Here, we
use the configuration that we already introduced and used in previous chapters. Our full
configuration (that is, the content of config.yml) is shown as follows:

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: LanguageModelFeaturizer

 model_name: bert

 model_weights: "rasa/LaBSE"

 - name: "DIETClassifier"

 epochs: 100

 learning_rate: 0.001

policies:

 - name: MemoizationPolicy

 - name: TEDPolicy

 - name: RulePolicy

At this point, all of the normal setting parts of Rasa are complete. In the next section, we
will discuss everything to do with the knowledge base. Let's start with knowledge base data.

Creating our knowledge base data
As discussed earlier (in the Creating a knowledge base subsection of the How do you use
knowledge base actions? section), the built-in knowledge base data is stored in a JSON file.
For this project, we created a homemade toy-level knowledge base, and we stored it in a
JSON file, as shown in the following code block:

{

 "song": [

 {

 "id": 0,

 "name": "Billie Jean",

 "singer": "Michael Jackson",

 "album": "Thriller",

 "style": "Rock"

148 Knowledge Base Actions to Handle Question Answering

 },

 <-- we have omitted some items here. -->

 {

 "id": 3,

 "name": "Poker Face",

 "singer": "Lady Gaga",

 "album": "The Fame",

 "style": "dance-pop"

 }

],

 "singer": [

 {

 "id": 0,

 "name": "Bob Dylan",

 "gender": "male",

 "birthday": "1941/05/24"

 },

 <-- we have omitted some items here. -->

 {

 "id": 3,

 "name": "Sting",

 "gender": "male",

 "birthday": "1951/10/02"

 }

]

}

In this JSON file, we define two types of objects: song and singer. Then, we add some
instances (such as a dictionary of attributes) for each type.

The knowledge base data will be used by knowledge base action. In the next section, we
will give a detailed introduction to knowledge base actions.

Learning by doing – building a knowledge-based music query chatbot 149

Creating our first knowledge base action
In general, using Rasa SDK to create a vanilla knowledge base action is pretty
easy. What we need to do is create our own knowledge base action to inherit the
ActionQueryKnowledgeBase base class and override the name method and the
__init__ method to inject our own knowledge base data. The code is as follows:

from rasa_sdk.knowledge_base.actions import
ActionQueryKnowledgeBase

from rasa_sdk.knowledge_base.storage import
InMemoryKnowledgeBase

class MyKnowledgeBaseAction(ActionQueryKnowledgeBase):

 def name(self) -> Text:

 return "action_response_query"

 def __init__(self):

 knowledge_base = InMemoryKnowledgeBase("data.json")

 super().__init__(knowledge_base)

In the __init__ method, first, we created an instance of InMemoryKnowledgeBase
using our own knowledge base stored in the data.json file. Then, we passed this
knowledge base object to the __init__ method of ActionQueryKnowledgeBase.

Unfortunately, the current response that has been generated from this action is not user-
friendly. We need to carry out more work to customize this knowledge base action. We
will discuss this topic in more detail in the next section.

Customizing our knowledge base action
There are two methods we need to override to produce a more user-friendly response.

150 Knowledge Base Actions to Handle Question Answering

The first one is utter_objects(). This method is used to send a list of found objects
(usually in the form of text) to the user to inform the user of the result of the query. In our
project, we will override this method using the following code:

 async def utter_objects(

 self,

 dispatcher,

 object_type,

 objects,

) -> None:

 if objects:

 dispatcher.utter_message(text=f"Found the following
{object_type}s:")

 repr_function = await utils.call_potential_
coroutine(

 self.knowledge_base.get_representation_
function_of_object(object_type)

)

 for I, obj in enumerate(objects, 1):

 dispatcher.utter_message(text=""{i}: {repr_
function(obj)"")

 else:

 dispatcher.utter_message(text=""I did''t find any
{object_type}s"")

The second one is utter_attribute_value(). This method is used to send out a
response, which tells the user the value of the attribute of interest. In our project, we will
override this method using the following code:

 def utter_attribute_value(

 self,

 dispatcher,

 object_name,

 attribute_name,

 attribute_value,

) -> None:

Learning by doing – building a knowledge-based music query chatbot 151

 if attribute_value:

 dispatcher.utter_message(

 text=f"{object_name}'s {attribute_name} is
{attribute_value}."

)

 else:

 dispatcher.utter_message(

 text=f"I didn't

 find {object_name}'s {attribute_name}."

)

In this code, if we get the attribute_value (that is, it is not None), we send a message
to the user of the value of the attribute. If we do not get the attribute_value (that is,
it is a None), we send a message to the user that the bot could not find the attribute.

Training a model, starting the server, and making inferences
We are using a standard directory layout, so we can use the default command to train the
model. Typing this into your Terminal (or Command Prompt for Windows):

rasa train

After executing the preceding command, we have completed the training of the model.
We will have our model in the models directory.

Now it is time to run it. There are two servers that we need to start up: the Rasa action
server and the Rasa server.

We need to run the following command to run the Rasa action server:

rasa run actions

Since it is a server, it will keep running. To run another command, we need to open a new
Terminal. In this new Terminal, we will run rasa shell, which we already mentioned
in previous chapters. Here, rasa shell is a convenient tool; it not only runs the Rasa
server in the background, but it also provides a Terminal-based interactive UI for the user
to make inferences. Running rasa shell is easy. Just type the following command into
your Terminal:

rasa shell

152 Knowledge Base Actions to Handle Question Answering

After the preceding command has been executed, we can interact with the bot in the shell
command line by typing the input directly into the Terminal, as follows:

Your input -> List me some songs of Sting

 Find the following songs:

 1: The Shape of My Heart

Supporting the Neo4j knowledge base
Earlier (in the Creating a knowledge base subsection of the How do you use knowledge base
actions? section), we introduced InMemoryKnowledgeBase, which is very easy to use
and suitable for small applications. However, because it stores all of the data in memory,
it cannot be used in large applications. The knowledge base of large applications is usually
very large, complicated, and cannot be fully loaded into memory. Such large knowledge
bases are usually managed by professional knowledge base software, such as Neo4j.
Neo4j (https://neo4j.com/) is a graph database that is extremely popular in the
industry; it has rich features. So, can we use the knowledge base based on Neo4j in Rasa?
Of course, we can! We will discuss this in this section.

Before discussing the specific implementation any further, we have a decision regarding
the code: we will not discuss the code of Neo4j. The code of Neo4j is beyond the
scope of this book. Therefore, we will not explain how to use Neo4j (and its related
code) in this chapter. You can learn about Neo4j through the official documentation
(https://neo4j.com/docs/) or related books (https://www.packtpub.
com/catalogsearch/result/?q=Neo4j). If you are interested in how we
operate Neo4j, our GitHub project (https://github.com/PacktPublishing/
Conversational-AI-with-RASA/blob/main/Chapter06/neo4j_
knowledge_base.py) contains the complete Neo4j code for you to read.

Earlier (in the Building your own knowledge base subsection of the How do you customize
knowledge base actions? section), we discussed how to create a new knowledge base
instead of using InMemoryKnowledgeBase. You need to inherit KnowledgeBase
and implement the get_objects(), get_object(), and get_attributes_of_
object() methods.

Let's discuss the get_objects() first.

https://neo4j.com/
https://neo4j.com/docs/
https://www.packtpub.com/catalogsearch/result/?q=Neo4J
https://www.packtpub.com/catalogsearch/result/?q=Neo4J
https://github.com/PacktPublishing/Conversational-AI-with-RASA/blob/main/Chapter06/neo4j_knowledge_base.py
https://github.com/PacktPublishing/Conversational-AI-with-RASA/blob/main/Chapter06/neo4j_knowledge_base.py
https://github.com/PacktPublishing/Conversational-AI-with-RASA/blob/main/Chapter06/neo4j_knowledge_base.py

Learning by doing – building a knowledge-based music query chatbot 153

Overriding get_objects() to query the objects list from Neo4j
The function of get_objects() is to query the object list in Neo4j. Before we explain
our ideas, let's take a look at its main code. The following is the code for get_objects():

 async def get_objects(

 self, object_type, attributes, limit = 5

):

 # convert attributes to dict

 attrs = {}

 for a in attributes:

 attrs[a["name"]] = a["value"]

 # transformer for query

 object_type = object_type.capitalize()

 # split into attrs and relations

 attrs_filter = {}

 relations_filter = {}

 relation = self.relation_attributes[object_type]

 for k, v in attrs.items():

 if k in relation:

 relations_filter[relation[k]] = v

 else:

 attrs_filter[k] = v

 # query Neo4j database

 result = self.do_get_objects(object_type, attrs_filter,
relations_filter, limit)

 return result

In the code of get_objects(), we performed the following steps:

1. First, we normalized object_type to make it completely consistent with the node
type in Neo4j.

2. Next, we divided the attribute filtering into node attributes and relational queries
according to our data structure in Neo4j.

154 Knowledge Base Actions to Handle Question Answering

3. Finally, we used Neo4j (by calling self.do_get_objects()) to perform
such a query.

The next function that we need to implement is get_object().

Overriding get_object() to query an object from Neo4j
The get_object() function returns the corresponding object by querying the object
identifier (which is the input parameter of the function) in the Neo4j database. This logic
is not hard. First, we normalize the query input. Second, we send the query to a helper
function, named self.do_get_object(), which will access the Neo4j database and
fetch the results. The code is as follows:

 async def get_object(

 self, object_type, object_identifier

):

 # transformer for query

 object_type = object_type.capitalize()

 # query Neo4j

 result = self.do_get_object(

 object_type,

 object_identifier,

 await self.get_key_attribute_of_object(object_
type),

 await self.get_representation_attribute_of_
object(object_type),

)

 return result

In the next section, we will examine how to override get_attributes_of_
object().

Summary 155

Overriding get_attributes_of_object() to get the attributes of an
object type
The last piece we need to implement is the get_attributes_of_object()
method. It returns a list of all the attributes that belong to the provided object type. Our
implementation for this method is as follows:

 async def get_attributes_of_object(self, object_type):

 # transformer for query

 object_type = object_type.capitalize()

 # get attribute from Neo4j

 result = self.do_get_attributes_of_object(object_type)

 return result

Congratulations! You have successfully made a knowledge-based music query chatbot.
Now, you should have a deeper understanding of how to create a knowledge base action
and how to configure NLU and dialogue management to trigger knowledge base actions
following a user's request. You also learned how to use Neo4j as your knowledge base in
a knowledge base action.

Summary
In this chapter, we introduced how to use knowledge base actions to handle question
answering. First, you learned how to create an in-memory knowledge base for retrieving
information that can be used to answer questions. Second, you were introduced to the
working principles of knowledge base actions and learned how to configure NLU and
dialogue management systems so that user requests can trigger knowledge base actions.
Third, you learned how to modify knowledge base actions to customize them to your
business and how to create a knowledge base by using your own code. Finally, we also
built a knowledge-based music query chatbot, step by step, to help you understand those
concepts better.

In the next chapter, we will discuss entity roles and groups for complex Named Entity
Recognition (NER).

7
Entity Roles and

Groups for Complex
Named Entity

Recognition
In Chapter 2, Natural Language Understanding in Rasa, we introduced how to carry out
Named Entity Recognition (NER) in Rasa. NER extracts the entity type and the entity
value from a piece of text. Unfortunately, for complex NER, we require more information
than simply the entity type and the entity value. In this chapter, we will introduce the
entity roles and entity groups for dealing with complex NER problems. The entity role can
be used to distinguish the different semantic roles of entities (that have the same entity
type). In comparison, the entity group can be used to group entities into different groups,
where each grouped entity belongs to different subtasks in the same request.

In this chapter, you will learn how entity roles and entity groups can be used to solve the
complex NER problem. Additionally, you will learn how to define training data, configure
pipelines, and write stories for entity roles and entity groups. Finally, you will develop a
practical understanding with the help of the hands-on exercise provided at the end of this
chapter.

158 Entity Roles and Groups for Complex Named Entity Recognition

In this chapter, in particular, we will cover the following topics:

• Why do we need entity roles and entity groups?

• Using entity roles to distinguish semantics roles in entities of the same type

• Using entity groups to divide entities into groups

• Configuring Rasa to use entity roles and groups

• Learning by doing – building a ticket and drink booking bot

Let's begin by discussing why we need entity roles and entity groups.

Technical requirements
You can find all of the files for this chapter inside the directory named ch07 in the
following GitHub repository: https://github.com/PacktPublishing/
Conversational-AI-with-RASA.

Why do we need entity roles and entity
groups?
Sometimes, it is not enough to only have the entity type and entity value to accomplish a
complicated task. We need to distinguish entities at a more granular level. Rasa provides
two additional pieces of information about an entity: its role and group.

You can use entity roles to distinguish entities from the same entity type. For example,
in your bot system, you can use an entity of the city type to mark a traveler's departure
and arrival cities. Since both the departure and the destination are marked as city types,
the bot cannot distinguish which one is the departure. In this case, you can use the entity
role information to determine which city entity is the departure city and which one is the
arrival city.

https://github.com/PacktPublishing/Conversational-AI-with-RASA
https://github.com/PacktPublishing/Conversational-AI-with-RASA

Using entity roles to distinguish semantics roles in entities of the same type 159

For more complex expressions, users could express two or more different requests at the
same time. This time, understanding how to distinguish between which entities belong
to the same group of requests will be critical to task execution. For example, consider a
user who requests a glass of juice with ice and a glass of soda without ice. Because of the
flexibility of user expression (for example, a glass of juice with ice; a glass of soda without
ice and a glass of juice and a glass of soda, the latter with ice, the former without ice), there
are many possibilities for the relative order of key entities (that is, juice, soda, with ice,
and without ice). Therefore, the robot has no way of knowing which drink needs ice. In
this case, using entity groups can help us to distinguish which entities are in a group. Each
group represents a subtask, and the entities in the same group belong to the same subtask.

Using entity roles to distinguish semantics
roles in entities of the same type
Rasa offers entity roles in which to distinguish the different roles of the same entity type.
Let's take a look at an example of booking a flight ticket between New York and Chicago.
If the system does not distinguish the departure and destination roles of the city entity,
the bot will not able to understand whether the ticket is from New York to Chicago or
from Chicago to New York. With the entity role, the entity has additional information that
represents its semantic role (such as the departure or the destination), which will solve
this problem for the bot.

To use entity roles, we need to annotate our training data with the role information along
with the entity type. Some sample training data appears as follows:

A flight ticket from [New York]{"entity": "city",
"role": "departure"} to [Chicago]{"entity":"city",
"role":"destination"}

In the preceding sample data, we can note the following:

• We annotate New York as an entity of the city type and a role of departure. Then, we
annotate Chicago as an entity of the city type and a role of destination.

• With the role information, Rasa can distinguish between New York and Chicago via
the departure and destination roles. The role information can also be used in slot
mapping in forms.

160 Entity Roles and Groups for Complex Named Entity Recognition

In the model training phase, the powerful and deep neural network algorithms of Rasa are
able to learn how to predict entity roles correctly. So, when users input requests, our bot
can recognize the departure and destination.

In the next section, we will introduce entity groups that can be used to solve the grouping
issues of entities.

Using entity groups to divide entities into
groups
Sometimes, there will be multiple groups of entities, where each group belongs to one
subtask. Entities need to be grouped into subtasks based on semantics. Let's take a look
at an example of ordering drinks. A customer could order two drinks, where one is a
large cup of juice with ice and the other one is a medium cup of soda without ice. User
expressions can be versatile, and if entities are not grouped, the bot system won't be able
to understand the configurations of the two separate drinks.

Rasa offers the use of entity groups to tackle this challenge. With entity groups, an entity
not only has entity type, but it also has group information, which indicates the subtask
that it belongs to.

To use entity groups, we need to annotate our training data with the group information
along with the entity type. Some sample training data appears as follows:

Hi, I'd like to order two drinks. One [large cup]{"entity":
"size", "group": "1"} of [juice]{"entity": "drink",
"group":"1"}. Another one is [medium cup]{"entity": "size",
"group": "2"} of [soda]{"entity": "drink", "group":"2"}. The
former one [with ice]{"entity": "ingredient", "group": "1"},
and the latter one [without ice]{"entity": "ingredient",
"group": "2"}.

In the preceding sample data, we annotate large cup, juice, and with ice as group
1. And we annotate medium cup, soda, and without ice as group 2.

With the group information, the action is able to read the entity groups and handle the
situation correctly when multiple groups of requests are bundled together.

So far, we have introduced entity roles and entity groups, what problems they can solve,
and how to create our training data. In the next section, we will discuss how we can use
this information in the dialogue system to complete the functions we want.

Configuring Rasa to use entity roles and groups 161

Configuring Rasa to use entity roles and
groups
The use of entity roles and entity groups requires the involvement of the settings in the
domain, story, form, and NLU pipeline. First, let's take a look at how to set them up in the
domain.

Updating the entities setting for roles and groups
For an entity that uses the entity role and groups feature, you need to list the roles and
groups information in the entities of the domain file. Here is an example:

entities:

 - time

 - ticket_type

 - city:

 roles:

 - departure

 - destination

 - size:

 groups:

 - 1

 - 2

In this example, the city entity has two roles: departure and destination.
Additionally, the size entity has two groups: 1 and 2.

Next, we discuss how to use entity roles in stories and forms.

Updating forms and stories for roles and groups
Like ordinary entities, you can also use entities with entity role information in forms or
stories. The advantage of this is that the system can take different actions according to
different entity roles.

162 Entity Roles and Groups for Complex Named Entity Recognition

Let's imagine the following use case: when a user first informs us of the place of arrival,
we ask whether they want to depart from the current city. When the user first informs
us of the place of departure, we ask them about the place of arrival. One possible
implementation is as follows:

stories:

- story: given destination, ask if departure from current city

 steps:

 <-- greet intent and utter_greet are omitted here -->

 - intent: book_ticket

 entities:

 - city: Shanghai

 role: destination

 - action: utter_ask_departure_from_current_city

- story: given departure, ask the destination

 steps:

 <-- greet intent and utter_greet are omitted here -->

 - intent: book_ticket

 entities:

 - city: Beijing

 role: departure

 - action: utter_ask_destination

Another way to use entity roles and entity groups is to use them in forms. This method is
actually more common. In the ticket booking scenario, we need to distinguish whether the
city belongs to the departure or the destination. An effective way is to define the departure
and destination slots, and then map the city entity to the departure or destination slot
according to the entity role information. One possible implementation is shown in the
following code snippet:

forms:

 ticket_form:

 city_depart:

 - type: from_entity

 entity: city

 role: departure

 city_dest:

 - type: from_entity

Learning by doing – building a ticket and drink booking bot 163

 entity: city

 role: destination

 date:

 - type: from_entity

 entity: date

In ticket_form, we define a city_depart slot, which will map from an entity if
the entity type is city and the entity role is departure. We also define a city_dest
slot, which can map from an entity if the entity type is city and the entity role is
destination.

Next, let's learn how to properly configure the pipeline to support entity roles and entity
groups.

Components supporting entity roles and entity groups
Although the function of entity roles and entity groups is very powerful, this feature is
not in the traditional NER. Therefore, not all algorithms support this feature. Currently,
in Rasa 2.2.x, only DIETClassifier and CRFEntityExtractor support this
feature. You need to make sure that if you want to use entity roles and entity groups, the
components that support this feature are added into the pipeline. You only need to add the
corresponding components to the pipeline without any special settings.

In the next section, we will check our understanding of these concepts in a practical
exercise.

Learning by doing – building a ticket and drink
booking bot
We have designed this section to enhance your practical understanding. We will create
a ticket and drink booking bot based on a homemade toy-level dataset. The robot can
simulate the process of booking tickets and drinks for travelers (they will not actually
book tickets or drinks).

What are the features of our bot?
By using a combination of entity roles and slot mapping in the form, we can map city
entities into departure and destination slots. In this way, the user's request can be
successfully processed.

164 Entity Roles and Groups for Complex Named Entity Recognition

By using entity groups, our bot system can easily group entities into subtasks, which will
make it possible to process them.

How can we implement it?
Let's follow the official Rasa project structure:

.

├── actions

│ └── actions.py

├── config.yml

├── credentials.yml

├── data

│ ├── stories.yml

│ └── nlu.yml

├── domain.yml

├── endpoints.yml

└── models

Let's begin with the train data.

Creating the NLU training data
In our project, all of the training NLU data is stored in the data/nlu.yml file. In this
file, we need some training data for an intent: book_ticket. We will use this intent to
express that users want to book a ticket.

Part of the training data content (the full content has already been provided to you in the
GitHub repository) is as follows:

version: "2.0"

nlu:

 - intent: book_ticket

 examples: |

 - Help me book the ticket

 - Help me book a ticket for departure from [San
Francisco]{"entity": "city", "role": "departure"}

 - Help me book a ticket from [New York]{"entity": "city",
"role": "departure"}

 - Help me order one from [Tomorrow](date)[New York]

Learning by doing – building a ticket and drink booking bot 165

{"entity": "city", "role": "departure"} to [Berlin]{"entity":
"city", "role": " destination"}'s ticket

 - Help me order a [Tomorrow](date)[Berlin]{"entity":
"city", "role": "departure"} to [Paris]{"entity": "city",
"role": " destination"}'s ticket

 - Book me a ticket for [tomorrow](date)

 - Help me book a ticket to [Madrid]{"entity": "city",
"role": "destination"}

In the preceding NLU training data, we have created some training examples (with
annotations for entity roles and entity groups) to represent the questions that users might
ask our bot.

In the next step, we will create the story data for this project.

Creating the story data and rules
Stories and rules are stored in the data/stories.yml file. In order to more easily
observe the entity role and entity group information, we will use the rule to map the intent
of book_ticket and book_drinks to the corresponding inspect actions. That is to
say, the book_ticket intent will trigger the action_ticket_response action,
and the book_drinks intent will trigger the action_drink_response action. The
specific configuration is as follows:

version: "2.0"

stories:

 - rule: handle drink query

 steps:

 - intent: book_drinks

 - action: action_drink_response

 - rule: handle ticket query

 steps:

 - intent: book_ticket

 - action: action_ticket_response

Next, we will talk about the configuration of the domain.

166 Entity Roles and Groups for Complex Named Entity Recognition

Configuring the domain
The domain settings are stored in the domain.yml file. In this chapter, the settings are
essentially the same as those that were introduced in previous chapters. We need to add
all the slots and entities that are used by the knowledge base actions. The outline of the
domain file is as follows:

intents:

 <-- we have omitted all the intents here. -->

entities:

 - city:

 roles:

 - departure

 - destination

 - date

 - ingredient:

 groups:

 - 1

 - 2

 - size:

 groups:

 - 1

 - 2

 - drink:

 groups:

 - 1

 - 2 slots:

 <-- we have omitted all the slots here. -->

responses:

 <-- we have omitted all the responses here. -->

actions:

 - action_drink_response

 - action_ticket_response

 <-- we have omitted other actions here. -->

In the next step, we will configure the pipelines and policies for Rasa.

Learning by doing – building a ticket and drink booking bot 167

Configuring the pipelines and polices
The configurations of the pipelines and policies are stored in the config.yml file. In this
project, the pipeline settings and policy configurations are nothing special. The complete
content of config.yml is as follows:

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: LanguageModelFeaturizer

 model_name: bert

 model_weights: "rasa/LaBSE"

 - name: "DIETClassifier" # supports entity roles and groups

 epochs: 100

 learning_rate: 0.001

policies:

 - name: MemoizationPolicy

 - name: TEDPolicy

 - name: RulePolicy

In the NLU pipeline, you should notice that we use DIETClassifier to act as an NER
extractor. This setting is on purpose. We need a component that supports entity roles and
entity groups.

In the next section, we'll examine how to use entity roles and entity groups in custom
actions.

Creating our form action
For this toy project, we will not actually call the API to book tickets. Our action only
prints out the booking information for us to inspect the entity roles and entity groups. The
specific implementation code for action_ticket_response is as follows:

class TicketQueryAction(Action):

 def name(self) -> Text:

 return "action_ticket_response"

 def run(self, dispatch, tracker, domain):

 entities = []

 for entity in tracker.latest_message['entities']:

168 Entity Roles and Groups for Complex Named Entity Recognition

 entities.append(

 {"entity": entity["entity"], "value":
entity["value"],

 "role": entity.get("role")})

 msg = str(entities) + "\n"

 dispatch.utter_message(msg)

 return []

The specific implementation code for action_drink_response is as follows:

class DrinkQueryAction(Action):

 def name(self) -> Text:

 return "action_drink_response"

 def run(self, dispatch, tracker,domain):

 # print out entities by group

 msg = ""

 entities = []

 for entity in tracker.latest_message['entities']:

 if entity.get("group") == "1":

 entities.append(

 {"entity": entity["entity"], "value":
entity["value"],

 "group": entity["group"]})

 msg += "group #1: " + str(entities) + "\n"

 entities = []

 for entity in tracker.latest_message['entities']:

 if entity.get("group") == "2":

 entities.append(

 {"entity": entity["entity"], "value":
entity["value"],

 "group": entity["group"]})

 msg += "group #2: " + str(entities)

 dispatch.utter_message(msg)

 return []

So far, we have completed all of the configuration and coding work. The next step is to
train the model and run the system to start the inference.

Learning by doing – building a ticket and drink booking bot 169

Training a model, starting the server, and making inferences
We can use the default command for training. Type this into your Terminal (or Command
Prompt for Windows):

rasa train

When the command is over, our model will be placed inside the models directory.

Next, we will run the system. There are two servers that we need to run, that is, the Rasa
action server and the Rasa server:

1. Let's begin by running the Rasa action server. We can use the following command
to run the Rasa action server:

rasa run actions

Note that since it is a server, it will not finish running until we close it on purpose.
2. Next, we will start the Rasa server. In a new Terminal, we run rasa shell, which

we mentioned in previous chapters. Here, rasa shell is a convenient tool. It not
only runs the Rasa server in the background, but it also provides a Terminal-based
interactive UI for the user to make inferences. Running rasa shell is easy. Just
type the following command into your Terminal:

rasa shell

After the model has been loaded by rasa shell, we can interact with the bot in
the shell command line.

3. Now we can observe the entity role information by entering the corresponding
request, as follows:

Your input -> Help me order a ticket from Berlin to Paris
tomorrow

[{'entity': 'city', 'value': 'Berlin', 'role':
'departure'}, {'entity': 'city', 'value': 'Paris',
'role': ' destination'}, {'entity': 'date', 'value':
'tomorrow', 'role': None}]

As you can see from the output of the bot, it has successfully identified the type of
entity, the role of the entity, and has extracted the value of the entity.

170 Entity Roles and Groups for Complex Named Entity Recognition

4. To inspect the entity group information, you can use following query:

Your input -> One large cup of juice . Another one is
medium cup of soda. The former one with ice, and the
latter one without ice

group #1: [{'entity': 'size', 'value': 'large cup',
'group': '1'}, {'entity': 'drink', 'value': 'juice',
'group': '1'}, {'entity': 'ingredient', 'value': 'with
ice', 'group': '1'}]

group #2: [{'entity': 'size', 'value': 'medium cup',
'group': '2'}, {'entity': 'drink', 'value': 'soda',
'group': '2'}, {'entity': 'ingredient', 'value': 'without
ice', 'group': '2'}]

As you can see from the output of the bot, it has successfully identified the groups of
entities and output the information of the entities by group.

Congratulations! Thanks to the step-by-step explanation in this section, you have
mastered how to use entity roles and entity groups to handle complex NER.

Summary
In this chapter, we introduced entity roles and entity groups. First, we discussed why we
need entity roles and entity groups. Second, we examined how to create NLU training
data for entity roles and entity groups. Third, we introduced how to configure NLU and
dialogue management systems so that we can use entity roles and entity groups. Finally,
we built a ticket and drink booking bot, step by step, to help you understand those
concepts better.

In the next chapter, we will discuss how Rasa works and examine how to extend (that is,
customize) Rasa's functions.

8
Working Principles
and Customization

of Rasa
In this chapter, we introduce the working principles behind Rasa. We will discuss
exactly what happens after Rasa receives requests from its users. This is essential for you
to understand how to debug a Rasa application, which we will discuss in Chapter 11,
Debugging, Optimization, and the Community Ecosystem.

We will also learn how to extend and customize Rasa. Using detailed examples, you will
learn to create and use custom components that allow you to use adapters or advanced
features not included in Rasa. This will help you to create highly customized or complex
chatbot applications.

In this chapter, we will cover the following topics:

• Understanding Rasa's Natural Language Understanding (NLU) module

• Understanding Rasa policies

• Writing Rasa extensions

• Practice: Creating your own custom English tokenizer

172 Working Principles and Customization of Rasa

Understanding Rasa's NLU module
Let's start by looking at how the components in Rasa's NLU module work. We will
introduce them separately in their two working processes, namely the training process
and the inference process.

How does the NLU training work?
The main implementation of the training process is in the rasa.nlu.train.train
function and the rasa.nlu.model.Trainer class. In this section, we introduce how
Rasa's NLU module works during the training process.

Initializing the trainer object
The instantiation step is implemented in the rasa.nlu.model.Trainer.__init__
() method. During the training process, Rasa reads the pipeline field in the config.
yaml configuration file, and gets the detailed definition of every component in the
pipeline.

Rasa takes the component configuration and pipeline configuration as the parameters to
call the create() class method of the component. This method returns an instance of
this class.

In this way, we can create the component instances one by one according to the defined
order in the pipeline and put them into a list. This list is also called the pipeline object.

Starting the training process
The training process is implemented in the rasa.nlu.model.Trainer.train()
method. Trainer first updates the context (the variables passed between components)
of the pipeline, and then calls the train() method in each component. The training
process of each component is completed by its own train() method.

The train() method of a component takes the training data and model configuration as
parameters. Besides this, the train() method also receives the context from upstream
components through **kwargs in the parameter list. This context contains the different
variables passed by other components. Each component can read and write the context to
obtain information from other components or pass information to other components.

Understanding Rasa's NLU module 173

Saving the model to disk
After the training process is done, the output model needs to persist to the filesystem. The
persistence process is implemented in the rasa.nlu.model.Trainer.persist()
method. When Trainer completes the training processes of all the components,
Trainer will call the persist() method of each component one by one according to
their order in the pipeline.

The persist() method of a component takes a filename (the trainer will automatically
generate a unique filename for each component based on the component name and
sequence in the pipeline) and the model output directory path as parameters. The
persisting process of each component is completed by its own persist() method.

Besides persisting the component, the persist() method of a component also needs to
return a dictionary that will be used to update the metadata of the component. The trainer
records the metadata of all the components. This metadata will be used when loading Rasa
models from the filesystem. After the persistence process is done for all the components,
Trainer writes the pipeline object and metadata of all the components as the model
metadata into the model output directory.

How does NLU inference work?
The inference step is implemented in the rasa.core.interpreter.
RasaNLUInterpreter class and the rasa.nlu.model.Interpreter class. In this
section, we introduce how Rasa's NLU module works during the inference step.

Initializing the interpreter object
During the inference step, the model needs to be loaded from the filesystem and
instantiated again. As we discussed in the previous section, during the training step the
trainer already writes all of the metadata into the model directory, and this metadata
contains all of the required information to load a model from the filesystem.

Rasa calls the load() static method of rasa.nlu.model.Interpreter with the
directory of the model as a parameter. The load() method completes the loading of
the model metadata, and then calls the create() static method with the metadata and
model directory as parameters. In create(), use metadata to load each component
class in the pipeline, and call the load() class method of each component with the
component metadata, model directory, and context as parameters. The load() method
of each component is responsible for restoring itself from the filesystem. Finally, call the
__init__ method of rasa.nlu.model.Interpreter with components, context,
and model metadata as parameters, to create an Interpreter object.

174 Working Principles and Customization of Rasa

Doing the inference process
The NLU parsing part of the user's request is completed by the parse() method of
the interpreter. The parse() method creates a message object which is used to carry
data, then calls the process() method of each component with the message object and
context as the parameters. The inference process of each component is completed by its
own process() method, and adds the inference result to the message object. After the
last component inference is completed, the message object contains all of our inference
results.

Constructing the output result
The final output of the inference is based on the data in the message object.

It is worth noting that when constructing the output result from the message object, it
will filter the data according to the configuration. When you implement your own custom
component, you need to add data to the message object through the set() method of the
message object, and make sure to set the add_to_output parameter to True.

Here is an example of the final NLU inference results:

{

 "text": "What's the weather like tomorrow for New York?",

 "intent": {

 "name": "weather_inquiry",

 "confidence": 0.95

 },

 "entities": [

 {

 "start": 4,

 "end": 5,

 "value": "tomorrow",

 "entity": "date",

 },

 {

 "start": 6,

 "end": 8,

 "value": "New York",

 "entity": "city",

 }

Understanding how Rasa policies work 175

]

}

We introduced the output format of NLU in Chapter 2, Natural Language Understanding
in Rasa. So, you should be familiar with each field in the preceding example.

As we come to the end of this section, you should now have a deeper understanding of
how these results are processed. In the following section, we will discuss how Rasa policies
work.

Understanding how Rasa policies work
It is important to understand how Rasa policies work. By being familiar with their
working principles, developers can debug the dialogue management function.

Using historical context is very important for a policy to predict the next action. Suppose
our bot can book train tickets and plane tickets. There is a conversation that has been
going on for multiple turns. In the last turn, when the bot asked the user where the
departure point was, the user replied: "New York." If there is no historical information, our
bot will not know whether it is currently booking a train ticket or a plane ticket. Therefore,
the next action cannot be determined. Policies in Rasa normally use multiple history
states (five by default).

It is crucial for Rasa's dialogue management module to turn those history states into some
data structures that a policy can use. This conversion is the topic we will discuss in the
next section.

Converting trackers to training data
The dialogue history in Rasa is stored in the tracker object. A tracker represents the
whole dialogue history between a user and the bot. This is true for both the training and
inference processes.

Converting a tracker to training data requires several steps, which we will discuss in the
following subsections.

Converting from a tracker to a prior tracker
During training and inference, we need to extract the historical dialogue state from the
conversation. The status of a historical dialogue can be represented by a prior tracker. A
prior tracker records the history from the beginning of the conversation to a certain turn
in history. We can generate a series of prior trackers from a tracker.

176 Working Principles and Customization of Rasa

The generate_all_prior_trackers() method of the rasa.shared.core.
trackers.DialogueStateTracker class is the key to generate prior trackers from
a tracker. The conversation history is stored in the tracker object. History is stored in Rasa
using events. Each event represents what happened in the past. Rasa generates the prior
tracker from the tracker by replaying these events.

The generation process is shown in the following figure:

Figure 8.1 – The process of generating prior trackers

In the preceding figure, #1, #2, and #3 represent the three prior trackers that are
generated by tracker #0.

Each dialogue history can be categorized into two types of events: ActionExecuted
events and non-ActionExecuted events. The ActionExecuted event is the
execution of a Rasa action, represented as a gray circle. The Non-ActionExecuted
event is for all events except ActionExecuted events, which are represented by
white circles. Every time an ActionExecuted event is encountered, a prior tracker is
generated. Figure 8.1 is just a simplified demonstration, and in a real scenario, Rasa will
execute multiple actions consecutively, so there will be multiple ActionExecuted
events.

Converting from a prior tracker to a tracker state
A prior tracker represents the dialogue state and cannot be used directly by the algorithms
to predict the next actions. To do this, we need first to convert a prior tracker to a tracker
state. In the context of a policy, a tracker state is a dictionary with the feature name as the
dictionary key and the feature value as the dictionary value.

Understanding how Rasa policies work 177

The get_active_state() method of the rasa.shared.core.domain.
Domain class is the key to convert prior trackers to tracker states. The key conversation
information recorded in the prior tracker (intent and entities status, current slot's status,
active loop status, and actions status) will be converted into the tracker state.

Here we give a brief description of the conversion process. When converting the intent
and entities to a tracker state, Rasa extracts the intent name and the entity type (with role
and group, if any) of the last turn as the state. Rasa extracts the slot name as the key, and
the slot feature (by slot.as_feature()) as the value, to create a directory for the
slot's status. For active_loop, Rasa extracts the value of the last active loop (the name
of a form) as the state. For the actions status, Rasa extracts the last action as the state.

Here is an example of a tracker state:

{

 'user': {

 'intent': 'weather',

 'entities': ('date-time',)

 },

 'slots': {'address': (1.0,)},

 'prev_action': {'action_name': 'weather_form'},

 'active_loop': {'name': 'weather_form'}

}

In this tracker state, the user key is used to store the status of intent and entity, the
slots key is used to store slot states, the prev_action key is used to store previous
action states, and the active_loop key is used to store the active loop status.

Tracker states can be directly input into basic policies like memorization. But for advanced
policies, the tracker state needs further processing before it can be used. We will discuss
this topic in the following subsections.

Padding and truncating of the tracker state
Conversations can have different lengths. This will result in a different number of tracker
states being converted from different trackers. Models based on machine learning can
usually only process fixed-length inputs. It is essential to pad or truncate the original
tracker state to get a fixed-length input.

178 Working Principles and Customization of Rasa

TrackerFeaturizer in Rasa handles this padding and truncation function.
According to different ways of handling maximum length, TrackerFeaturizer
has two subclasses: FullDialogueTrackerFeaturizer and
MaxHistoryTrackerFeaturizer. FullDialogueTrackerFeaturizer
uses the whole dialogue history as features to predict the next action. In contrast,
MaxHistoryTrackerFeaturizer only uses the most recent N turns of dialogue
history to predict the next action.

MaxHistoryTrackerFeaturizer is based on the fact that dialogue context has
strong locality. Locality means that the information needed for the current context should
in most cases be within the most recent several turns of dialogue. In other words, the very
old dialogue content should have little or no impact on the current dialogue state.

Here is a demonstration of how MaxHistoryTrackerFeaturizer works:

Figure 8.2 – Max history tracker

Figure 8.1 shows the working process of training MaxHistoryTrackerFeaturizer
with max_history set to be 2. The gray node refers to the current turn. The white nodes
before the gray node refer to the history turns. We can see that although #2 and #3 both
have more than two turns of history dialogue (since max_history is set to be 2), only
the most recent two turns of history dialogue will be used.

More advanced policies (such as TEDPolicy) cannot use a tracker state directly. First, it
needs to be converted into more detailed numerical values. We will discuss this process in
the next section.

Understanding how Rasa policies work 179

Converting a tracker state to a tracker state feature
The SingleStateFeaturizer class of the rasa.core.featurizers.single_
state_featurizer module is the key class used to process the conversion from a
tracker state to a tracker state feature. Different types of dialogue information will be
converted in different ways. Most types of dialogue information are encoded to one-hot or
multi-hot features.

In this example, we provide a simplified demonstration of the tracker state feature:

{

 "intent": [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],

 "entities": [1, 0],

 "action_name": [1, 0, 0, 0, 0],

}

From this demonstration of the tracker state feature, we know that all dialogue
information is converted to a fixed-length numerical vector feature.

How does policy training work?
In Rasa, policy training data will be treated as multiple trackers. Each tracker stores
a complete story. In the training process, we extract the tracker state feature from the
tracker and predict the next action. This is a typical supervised learning task. The task of
the policy becomes the typical time series classification problem. The specific algorithm
varies greatly from component to component. You can refer to the documentation of each
component to understand how their algorithms work.

How does policy inference work?
When we start a new conversation, the tracker state is not completely empty. If a user
starts a new conversation, action_session_start will automatically run to add
action_listen as the executed action into the tracker.

The dialogue management module runs in a similar way to training a model. It constantly
tracks the dialogue state and provides features to the relevant policy. The policy predicts
and runs actions until the action is to wait for user input (ActionListen) or the
maximum number of actions is exceeded (to avoid deadlocks).

180 Working Principles and Customization of Rasa

Writing Rasa extensions
Rasa is very flexible for extensions. Besides using the built-in functions, developers can
freely extend it to have third-party functions.

There are two common scenarios for using custom components. The first scenario is
to develop a custom adapter. Rasa and many Instant Messaging systems (IMs) can
communicate with each other through the built-in connector, but if the IM used by
the user is not supported (usually a product with fewer users or a private product), you
can create an adapter for it yourself. The second scenario is to develop custom NLU or
dialogue management components. Technology is developing rapidly in the field of chat
robots, and most senior developers use their own models or techniques in their projects.

First of all, let's discuss how to write pipeline and policy extensions.

Writing pipeline and policy extensions
In practical applications, the probability of using custom pipeline components is much
greater than using custom strategies. The usage method and implementation steps of a
custom strategy are similar to those of a custom pipeline component. In this example, we
mainly focus on introducing how to customize the pipeline components.

In the configuration of the Rasa pipeline, developers can directly use the built-in
component name to refer to the component. This is shown in the following example:

pipeline:

 - name: WhitespaceTokenizer

 - name: LanguageModelFeaturizer

 model_name: "bert"

 model_weights: "rasa/LaBSE"

 - name: DIETClassifier

 epochs: 100

 learning_rate: 0.001

In the example, WhitespaceTokenizer, LanguageModelFeaturizer, and
DIETClassifier are the names of built-in components.

Writing Rasa extensions 181

The method of finding components by name cannot be applied to custom components,
because Rasa does not establish a mapping relationship between the name and
the custom component code. Thanks to the flexibility of Python, Rasa supports
loading custom components dynamically. For example, we have a component
called AwesomeLanguageModelFeaturize. It has the same function as
LanguageModelFeaturizer. This component (a class) is located in the mod
module of the pkg package. We can use this component with its fully qualified
name (a dotted name showing the path from the package to a class, function, or
method). In our case, the fully qualified name of the component is pkg.mod.
AwesomeLanguageModelFeaturizer. The following is an example of the use of this
custom component:

pipeline:

 - name: WhitespaceTokenizer

 - name: pkg.mod.AwesomeLanguageModelFeaturizer

 model_name: "bert"

 model_weights: "rasa/LaBSE"

 - name: DIETClassifier

 epochs: 100

 learning_rate: 0.001

In this example configuration, we used a custom component called pkg.
mod.AwesomeLanguageModelFeaturizer to replace the built-in
LanguageModelFeaturizer component. The configuration method of custom
components is the same as that of built-in components. In this example, we passed two
parameters: model_name and model_weights.

The specific implementation of the custom component depends on the function to be
implemented. Rasa provides a base class for each type of component. By inheriting the
base class, developers can create custom components more efficiently. We will teach
you how to create a working tokenizer component in the exercise part at the end of this
chapter.

In the next section, we will discuss how to write custom slot types.

182 Working Principles and Customization of Rasa

Writing custom slot types
The developer can create a custom slot type if the built-in slot type cannot meet the
needs of a given situation. Let's take a restaurant reservation system as an example. The
reservation system reserves small tables or large tables according to the number of diners.
Assume that the reservation rule is: if the number of diners is four or less, a small table
is reserved; if the number of diners is more than four and less than eight, a large table is
reserved; if there are more than eight diners, the reservation system cannot handle this
situation and the reservation will fail. The reservation system needs to perform different
operations according to different table reservations. The built-in slot type cannot handle
this situation, so we need to create a custom slot type.

The easiest way to create a custom slot is to inherit the slot base class (rasa.shared.
core.slots.Slot) and override the _feature_dimensionality() and _as_
feature() methods. The _feature_dimensionality() method is used to return
the dimension (number) of the feature. The _as_feature() method converts the value
of slot (in most cases from the entity) into a feature in numerical form (the dimension
needs to be consistent with the return value of the _feature_dimensionality()
method). One possible implementation of the slot type is as follows:

from rasa.shared.core.slots import Slot

class TableSlot(Slot):

 type_name = "table"

 def _feature_dimensionality(self):

 return 3

 def _as_feature(self):

 r = [0.0] * self._feature_dimensionality()

 if self.value:

 if self.value <= 4:

 r[0] = 1.0

 elif self.value <= 8:

 r[1] = 1.0

 else:

 r[2] = 1.0

 return r

Practice – Creating your own custom English tokenizer 183

In this implementation, the reservation status of the table converts to a feature in a way
similar to one-hot encoding. The detailed conversation is as follows: if the number of
diners is not given (this slot is not used), the slot feature is (0, 0, 0). If a small table
is reserved (the number of diners is less than or equal to four), the slot feature is (1, 0,
0). If a large table is reserved (the number of diners is greater than four and less than or
equal to eight), the slot feature is (0, 1, 0). If the number of diners exceeds eight, the
slot feature is (0, 0, 1).

The slot system allows developers to output different feature dimensions according to slot
configuration, and this is the reason that feature_dimentionality() is a method
instead of an attribute. Developers need to make sure that if there is no change in the
configuration, the dimension of the model output feature should stay the same, otherwise,
the inconsistency of feature dimensions in the training process and inference process will
cause system errors.

It is worth noting that the slot can output different feature dimensions according to the
configuration, and this is why the slot outputs the feature dimension through a method
(_feature_dimentionality()) instead of an attribute.

Writing extensions for other functionalities
In addition to using custom NLU components and policies, Rasa also supports custom
data loading (via custom data importer), custom tracker stores, custom connectors, and so
on. Since those functions are rarely used, we do not discuss them further in this chapter. If
you are interested in this functionality, you can read the documentation and code.

Practice – Creating your own custom English
tokenizer
As we discussed in the previous section, Rasa has a powerful extension system, and this
allows you to create custom components. In this section, we will show you how to create
an English tokenizer.

As discussed in Writing Rasa extensions, the easiest way to create a custom component is
to inherit the base class provided by Rasa. For our tokenizer, it needs to inherit rasa.
nlu.tokenizers.tokenizer.Tokenizer, and override the tokenize() method.

184 Working Principles and Customization of Rasa

For the sake of simplicity, we will use a simple way to split English text into tokens:
splitting the text according to spaces. One possible implementation of our English
tokenizer is as follows:

from rasa.nlu.tokenizers.tokenizer import Tokenizer

class MyWhitespaceTokenizer(Tokenizer):

 def __init__(self, component_config):

 super().__init__(component_config)

 def tokenize(self, message, attribute):

 text = message.get(attribute)

 words = text.split()

 tokens = self._convert_words_to_tokens(words, text)

 return self._apply_token_pattern(tokens)

In this implementation, we do the following:

1. We first get the text from the message.
2. Next, we split the text into token strings based on the spaces, since the expected

output of the tokenizer is a list of token objects.
3. Then we call the _convert_words_to_tokens() method of the base class to

convert the token strings into a list of token objects.
4. We apply the token pattern to tokens. The token pattern is a regular expression

that splits a token into multiple tokens. This is a common feature of all tokenizers.
5. Finally, we call the _apply_token_pattern() function of the base class to

achieve this feature.

Practice – Creating your own custom English tokenizer 185

Now let's use the custom English tokenizer component. We have already introduced
how to use custom components in the NLU pipeline in the previous section. To test our
custom tokenizer, we reuse the weather forecast bot project that has been introduced in
Chapter 4, Handling Business Logic. Replace the WhitespaceTokenizer component
with the custom English word segmentation component we just created. The modified
NLU pipeline is as follows:

pipeline:

 - name: customed.tokenizer.MyWhitespaceTokenizer

 - name: LanguageModelFeaturizer

 model_name: "bert"

 model_weights: "rasa/LaBSE"

 - name: RegexFeaturizer

 - name: DIETClassifier

 epochs: 100

 learning_rate: 0.001

 - name: ResponseSelector

 epochs: 100

 learning_rate: 0.001

 - name: EntitySynonymMapper

 - name: FallbackClassifier

In this pipeline configuration, we replaced the WhitespaceTokenizer component
with the fully qualified name of the custom English tokenizer (customed.tokenizer.
MyWhitespaceTokenizer). The rest remains unchanged.

At the end of the exercise, we train the model, start the action server, and use the Rasa
shell to test whether the custom component is working properly. The following shows a
conversation between us and the bot:

Your input -> what's the weather today?

Where?

Your input -> Tokyo

The weather of Tokyo for today (2021-08-04) is broken clouds,
its temperature range is : 26.840C-33.510C.

From the preceding dialogue, we know that the custom English tokenizer component is
working correctly.

186 Working Principles and Customization of Rasa

Summary
In this chapter, we discussed how Rasa works. Rasa can be divided into two parts: NLU
and policies. The key part of NLU is a pipeline composed of components. The core work
of the strategy is to convert the tracker into input data that can be used in the model
and then train the model. We also introduced how to write Rasa extensions for various
functions. Finally, we showed you how to create and use a custom English tokenizer
through a practical project.

In the next chapter, we will discuss testing and production deployment in Rasa.

Section 3:
Best Practices

In this section, you will learn how to deploy the Rasa system to the production
environment with high performance and high scalability. You will also learn how to use
conversation-driven development patterns and tools to develop chatbots. Finally, you will
learn about some nice tools/libraries from the Rasa ecosystem that can help you improve
your development efficiency.

This section comprises the following chapters:

•	Chapter 9, Testing and Production Deployment

•	Chapter 10, Conversation-Driven Development and Interactive Learning

• Chapter 11, Debugging, Optimization, and the Community Ecosystem

9
Testing and
Production

Deployment
In this chapter, we will introduce how to test Rasa projects. We will then discuss how to
verify NLU data and stories, as well as how to evaluate the performance of NLU models
and Dialogue management models. Through testing, we can find errors in projects
as early as possible. We can also comprehensively evaluate the performance of bots.

Moving on, we will discuss how to deploy Rasa applications in production environments.
We will discuss the choice of deployment methods, model storage, tracker stores,
and locker stores. By properly deploying Rasa applications, we can implement model
version management, load balancing, service expansion, and other functions in
production environments.

We will cover the following topics:

• Testing Rasa projects

• Deploying your Rasa assistant to production

Let's talk about validation and evaluation first, because they are executed before
deployment in the software development process.

190 Testing and Production Deployment

Testing Rasa projects
In this section, we will start by discussing how to validate data and stories. This step is
used to find obvious bugs. Later, we will discuss how to evaluate NLU performance and
how to read the corresponding reports. Finally, we will introduce the test story format
and learn how to use test stories to evaluate the performance of Dialogue management.

Validating data and stories
If developers can quickly detect whether there are errors and where these potential errors
are in NLU data and stories, this can help developers greatly improve work efficiency.
In Rasa, there is a command for this purpose:

rasa data validate

The preceding command will detect errors in the data and configuration. Common errors
include the following:

• Inconsistency of the training data (the same training data appearing in two or more
different intents)

• The intents in the training data being inconsistent with the intents in the domain
file (fewer or more intents)

In addition, this command can also check for conflicts in the story, such as the same story
history appearing (the length of the story history depends on the --max-history
parameter) with different follow-up actions. As we learned in Chapter 8, Working Principles
and Customization of Rasa, the prediction of Rasa policy is completely dependent on the
history of the story, so this conflict will cause the model to fail to predict an action correctly.

In general, the rasa data validate command can help us discover some common
errors in advance. However, because rasa data validate does not run the model,
it is impossible to evaluate the actual performance of the model. So, we need more
powerful tools to do this. We will discuss these in the next section.

Evaluating the NLU performance
Generally, when performing machine learning, a dataset is divided into a training set and
a test set (sometimes a validation or a development set is also created). We use the training
set to train the model and let the model learn how to use features to make predictions.
We use the test set (usually composed of samples that the model has never seen before,
that is, samples not in the training set) to evaluate whether the model uses features
correctly and accurately so that it can correctly process data that it has never seen before.
This is to determine whether it has good generalization.

Testing Rasa projects 191

Splitting the dataset
Usually, we divide the dataset into the training set and test set in a random manner to
ensure that the two data distributions are, as far as possible, the same. Rasa provides
us with a convenient command to split the dataset into a training set and test set:

rasa data split nlu

The preceding command will read the nlu data (by default, this is located in the data
directory and you can specify it by using the --nlu parameter). It uses 80% (this is
a default value, but you can specify a custom ratio by using the --training-fraction
parameter) of the data as training data, and the rest of the data is used as the test set. The
newly generated training set and test set will be saved in the directory specified by the
--out parameter (by default, it is the train_test_split directory). By default, your
new training data will be located at train_test_split/training_data.yml,
and your new test data will be located at train_test_split/test_data.yml.

Now that you have the test data, after you train your model with new training data,
you can use the test data to evaluate the NLU performance. This is exactly what we will
introduce in the next section.

Evaluating NLU models
To see how your trained NLU model performs on the test data, you can use the
following command:

rasa test nlu --nlu train_test_split/test_data.yml

The train_test_split/test_data.yml file is the test nlu data file that we just
generated in the previous section (the Splitting the dataset section).

After the test command is executed, you will find all the test result files located in
the results directory. Different NLU pipelines can have different result files, but all
pipelines will include two files: intent_errors.json and intent_report.json.

The intent_errors.json file will report all the failed NLU samples in the test data.
The following is a sample error:

[

 {

 "text": "Now [tomorrow](date-time)",

 "intent": "info_date",

 "intent_prediction": {

 "name": "weather",

192 Testing and Production Deployment

 "confidence": 0.9606658220291138

 }

 },

<-- we have omitted some similar items here. -->

]

In this report, the input text is Now [tomorrow](date-time), and the true intent is
info_date, but our model predicted it as the weather intent with a confidence level
of 0.9606658220291138.

The intent_report.json file is used to report the evaluation metrics. The following
block shows a sample report:

{

 "goodbye": {

 "precision": 1.0,

 "recall": 1.0,

 "f1-score": 1.0,

 "support": 1,

 "confused_with": {}

 },

<-- we have omitted some similar items here. -->

 "accuracy": 0.9615384615384616,

 "macro avg": {

 "precision": 0.9894736842105264,

 "recall": 0.9333333333333332,

 "f1-score": 0.9545945945945945,

 "support": 26

 },

 "weighted avg": {

 "precision": 0.9635627530364371,

 "recall": 0.9615384615384616,

 "f1-score": 0.9582120582120582,

 "support": 26

 }

}

Testing Rasa projects 193

The preceding report contains many metrics from different aspects. First, we will
introduce the metrics for each intent. The report on intent metrics is as follows:

 "goodbye": {

 "precision": 1.0,

 "recall": 1.0,

 "f1-score": 1.0,

 "support": 1,

 "confused_with": {}

 },

<-- we have omitted some similar items here. -->

The preceding report contains the classification metrics for the goodbye intent. It
reported that the accuracy of the goodbye intent is 1.0, the recall is 1.0, f1-score is
0.8, and support (number of samples) is 1.

In addition to the metrics for each intent, this report also contains metrics that reflect the
overall situation. The following is the content of the overall situation report:

 "accuracy": 0.9615384615384616,

 "macro avg": {

 "precision": 0.9894736842105264,

 "recall": 0.9333333333333332,

 "f1-score": 0.9545945945945945,

 "support": 26

 },

 "weighted avg": {

 "precision": 0.9635627530364371,

 "recall": 0.9615384615384616,

 "f1-score": 0.9582120582120582,

 "support": 26

 }

The report contains metrics: overall accuracy, the macro average (unweighted average) of
each classification metric, and the weighted average of each classification metric.

So far, we have learned that the rasa nlu test command provides a lot of detailed
reports. These are very important for improving the performance of an NLU model.

In the next section, we will discuss how to test the Dialogue model.

194 Testing and Production Deployment

Evaluating Dialogue management performance
In Rasa, developers can use the test command to evaluate how trained Dialogue models
perform on the test stories.

In the following subsection, we will talk about test stories.

Writing test stories
As we all know, to test the performance of a model, we need to provide input data and the
results that we expect (ground truth). Each session (each conversation) is composed of
multiple single-turn Dialogues. When we test performance at the session level, we need
to provide the test system with the input text, the expected NLU parsing results, and the
correct Dialogue actions for each turn. In Rasa, there is a special format to contain all this
test information. It is based on the ordinary story format. We already introduced this in
Chapter 3, Rasa Core.

The only difference between a test story and a normal story is that test stories contain the
input text (this could be a list of input text). Test stories are designed to be an end-to-end
test of the NLU and Dialogue model, so they must include input text. The following block
shows some test stories:

stories:

- story: A basic story test

 steps:

 - user: |

 hello

 intent: greet

 - action: utter_ask_howcanhelp

 - user: |

 show me [chinese]{"entity": "cuisine"} restaurants

 intent: inform

 - action: utter_ask_location

 - user: |

 in [Paris]{"entity": "location"}

 intent: inform

 - action: utter_ask_price

Testing Rasa projects 195

In order to show you the difference in format between the test story and the ordinary
story more intuitively, we will list some ordinary stories:

stories:

 - story: This is the description of one story

 steps:

 - intent: greet

 - action: action_ask_howcanhelp

 - slot_was_set:

 - asked_for_help: true

 - intent: inform

 entities:

 - location: "New York"

 - price: "cheap"

 - action: action_on_it

 - action: action_ask_cuisine

 - intent: inform

 entityies:

 - cuisine: "Italian"

 - action: restaurant_form

 - active_loop: restaurant_form

The different parts of the test story and the normal story have been marked in bold.
In general, there are two differences. The first is the different entity list representation
formats. The second is the input text, which only exists in the test stories. The entity list
and the input text of the test story are integrated (for example, show me [chinese]
{"entity": "cuisine"} restaurants), so that the entity can be both accurately
represented and used for the evaluation of the NLU model.

Evaluating Dialogue management models
It is easy to evaluate the performance of Dialogue management in Rasa. As you may have
guessed, you can use the command-line tool, as follows:

rasa test core --stories test_stories.yml --out results

In this command, the test_stories.yml file contains the test stories. The reports
will output to the results directory. All the failed stories will output to the results/
failed_test_stories.yml file.

196 Testing and Production Deployment

Deploying your Rasa assistant to production
Here we introduce how to deploy your Rasa assistant to production.

When to deploy
It is common to use the minimum viable product or MVP strategy during the product
development process. MVP is all about building a usable product prototype that fulfills
the key requirements in the most efficient and simple way and then iterating to fine-tune
the product details.

In Rasa, the official recommendation is that a product can be put into production as
an MVP as soon as it can handle the most important (but not every) "happy path" of
Dialogue. It's recommended to use Rasa X to have early users test the product prototype.
This is in order to continuously improve the model until the product prototype reaches
the MVP standard and you are ready to deploy it to a production environment.

Deployment options
When we want to deploy a Rasa assistant on a large scale, we normally use solutions based
on Kubernetes or OpenShift. Rasa offers some official simple examples to demonstrate
deployment in Kubernetes or OpenShift. As this is not a book about DevOps, we will
not cover this in detail, and we recommend interested readers check out the official Rasa
website. We also recommend reading additional materials on Kubernetes and OpenShift.

For small-scale deployment or single-server deployment, we can use Docker Compose
to deploy our Rasa assistant. Interested readers should read more on Docker.

Developers can also start Rasa by directly running the rasa command in the
command line, the same as what we do in the development phase. However, this is not
recommended for the production environment.

Model storage
For single-server cases, we normally choose to store models in local disk drives.

In large-scale deployments, normally, the training process is separate from the production
service. Trained models should be stored in a centralized storage system. When needed,
the service program can pull the corresponding model to its local environment and
automatically deploy it. This is when we need Rasa's functionality of model storage.
Rasa supports multiple solutions for dynamic model storage.

Deploying your Rasa assistant to production 197

HTTP-based model storage
The Rasa server periodically checks for a new model from a specific HTTP server. If there
is a new model, the Rasa server will download and deploy it automatically. We only need
to configure this in endpoint.yml:

models:

 url: http://my-server.com/models/default@latest

 wait_time_between_pulls: 10 # by default 100 with unit
second

By default, the Rasa server tries to check for a new model file (in zipped format) on the
HTTP server every 100 seconds. Developers can customize the time interval or set it to
be None, so the model only gets fetched once. Rasa uses the ETag information from the
HTTP server to judge whether the model is updated without downloading the model
itself. An HTTP server such as an Apache or NGINX one can provide an ETag header
after proper configuration.

Cloud-based model storage
Rasa supports pulling models from Amazon Simple Storage Service (S3), Google Cloud
Storage (GCS), and Microsoft Azure Storage. We only cover the configuration of S3 here
since the S3 protocol is supported by many distributed storage systems and online service
providers and has a large application ecosystem and user community. Rasa NLU handles
cloud storage in a very similar way in GCS and Azure, so an introduction to S3 can act
as a good reference for GCS and Azure as well.

Dependencies installation
We install the S3 client first:

pip install boto3

Configuration
We will configure how Rasa connects to the S3 server through the following
environment variables:

• AWS_SECRET_ACCESS_KEY

• AWS_ACCESS_KEY_ID

• AWS_DEFAULT_REGION

198 Testing and Production Deployment

• BUCKET_NAME (if the bucket named BUCKET_NAME does not exist, Rasa will
create one for you)

• AWS_ENDPOINT_URL

A common way to set environment variables is to write the name and value of the
environment variable directly before the command to be executed in the command line.
The following is an example:

ENV_VAR_A=value_a ENV_VAR_B=value_b cmd

In this example, the command to be executed is cmd. We set two environment variables
for this command: ENV_VAR_A and ENV_VAR_B. The values of these two environment
variables are value_a and value_b, respectively.

Usage
After configuring the preceding environment variables, when using commands such as
rasa shell, rasa run, and rasa x, developers can add --remote-storage
aws to configure pulling models from S3. Rasa will download the zipped model file from
cloud storage, unzip it to a temporary file path, and start the service in that path. Here
we give an example command:

rasa run --model 20210804-024016.tar.gz --remote-storage aws

In this example, we set the model storage to be S3-based cloud storage. Rasa will
download and run the specified model from cloud storage.

Tracker stores
All of the Dialogue processes within Rasa are stored by tracker objects. In large-scale
industry production systems, load balancing and auto-scaling are normally used.
User messages are likely to be sent to different servers for handling.

We should store user Dialogue history in an independent place. When a user request
reaches the server, the storage service will download the target user's Dialogue history.
When the user request ends, the user's Dialogue history should be automatically stored
in the storage service. The next time that the user's request reaches the server (it may
be a different server instance next time), the storage service will again restore the user's
Dialogue history into the system.

Deploying your Rasa assistant to production 199

This component is called a tracker store in Rasa. Rasa offers many out-of-the-box
tracker stores:

• InMemoryTrackerStore is the default tracker store for Rasa. It uses computer
memory as storage. Data will be lost if the server is restarted. This component
cannot be shared among different servers and only acts as the default tracker storage
solution for a single server.

• SQLTrackerStore stores trackers in a Structured Query Language (SQL)
database. PostgreSQL, Oracle (version > 11.0), and SQLite are databases compatible
with SQLTrackerStore.

• RedisTrackerStore uses Redis (https://redis.io/) to store trackers.
Redis is an open source, in-memory data structure store. It is often used for the
production deployment of Rasa applications.

• MongoTrackerStore uses MongoDB to store trackers. MongoDB is
a document-oriented NoSQL database.

• DynamoTrackerStore uses DynamoDB to store trackers. DynamoDB is
a NoSQL database running on Amazon Web Services (AWS).

If the required tracker store is not provided, Rasa allows developers to implement custom
tracker stores. The developer can inherit the TrackerStore class and implement the
solution for the new tracker store. Detailed definitions can be found in the Rasa official
documentation (https://rasa.com/docs/rasa/tracker-stores#custom-
tracker-store).

Lock stores
As we mentioned before, in large-scale industrial production systems, load balancing
and auto-scaling are usually used. User messages are likely to be sent to different servers
for processing. This may cause an error in the sequence of processing messages. In order
to solve this problem, Rasa introduced lock stores, which are distributed locks used to
handle the order of message processing, so that messages are always processed in the
correct order.

Rasa provides the following built-in lock stores:

• InMemoryLockStore is the default lock store. It only works for single processes
and doesn't work for multiple Rasa servers, no matter whether they are deployed in
single or multiple servers.

https://redis.io/
https://rasa.com/docs/rasa/tracker-stores#custom-tracker-store
https://rasa.com/docs/rasa/tracker-stores#custom-tracker-store

200 Testing and Production Deployment

• RedisLockStore uses Redis as the storage backend. In production
environments, Rasa applications are usually distributed on multiple servers and
run in a multi-process manner on each server. RedisLockStore implements
cross-process and cross-server distributed locks, so this lock store must be used
in production deployments.

High-performance settings for Rasa servers and
action servers
By default, Rasa servers and action servers only use one worker to process requests.
In this way, the advantages of modern CPUs with multiple cores are lost. We can make the
Rasa server and action server use multiple workers by changing the settings.

In order to use multiple workers in the action server, we need to set the ACTION_
SERVER_SANIC_WORKERS environment variable to the desired number of workers.

In order to use multiple workers in the Rasa server, we not only need to set the SANIC_
WORKERS environment variable to the number of workers we want but also set the tracker
store and lock store, which we introduced in the previous section.

Summary
In this chapter, we discussed two very important stages in the development of a Dialogue
system: testing and deployment. Testing is very important for us to ensure the intelligence
of a Dialogue system. We must find the current problems of the Dialogue system through
testing and correct these problems. We also discussed how to deploy Rasa projects to
production environments. A real large-scale Dialogue system needs to be accessed by tens
of thousands or even millions of users at the same time. Such a Dialogue system must
have very good horizontal scalability. Fortunately, Rasa considered these issues at the
beginning of the design and provided corresponding solutions. By using a central storage
system, tracker store, and lock store, we are able to extend our service smoothly.

In the next chapter, we will discuss a user-centered methodology and the tools required
for developing Dialogue systems.

10
Conversation-Driven

Development and
Interactive Learning

Compared with traditional software development, the challenge of developing a chatbot is
far greater. This is largely due to the fact that the user could say anything to the dialogue
bot. Of course, as a developer, you cannot cope with all possible situations for your robot.
Therefore, it is extremely important to understand your user's queries.

In this chapter, we will introduce a methodology in which to develop a dialogue system
called Conversation-Driven Development (CDD). This methodology improves dialogue
robots by observing, summarizing, and modifying the dialogue process. Additionally, we
will introduce a tool for CDD: Rasa X. In a step-by-step manner, we will learn how to use
Rasa X to complete all stages of CDD. Finally, we will also introduce you to Interactive
Learning, which is a technical solution that allows developers to interact with the
dialogue system to test system capabilities and quickly build training data.

Moving ahead, you will learn what CDD is and how it can be used to quickly develop
conversational robots. Additionally, you will learn how to quickly improve your dialogue
system by using Rasa X. Finally, you will learn how to use interactive learning to test the
capabilities of the system and how to use it to fix problems quickly.

202 Conversation-Driven Development and Interactive Learning

In this chapter, in particular, we will cover the following topics:

• Introduction to CDD

• Introduction to Rasa X

• Interactive learning in Rasa

Let's begin by introducing you to CDD.

Introduction to CDD
CDD is a methodology that enables you to develop a dialogue system; it was introduced
by the Rasa team. It is an iterative and interactive process: developers observe the behavior
of users and improve chatbot performance based on those observations.

CDD involves the following steps:

1. Sharing your bot: We should distribute our product prototype for user testing
as soon as possible. No matter how hard developers try, users will always have
something new to input into the chatbot. Many teams spend months developing
chatbots and focusing on conversations that, in reality, users never have.

2. Reviewing conversations: We should spend time studying the conversation between
users and our chatbot. It is very helpful to study real user conversations at each stage
of development (from the prototype to the real product). Far too many teams only
focus on simple attributes, such as how many users express certain intentions and so
on. Instead, they should spend more time studying application scenarios and user
experiences from the collected conversations.

3. Annotating NLU examples: Data from real users can improve the performance of
the model in the production environment. Therefore, annotating incoming
messages is important.

4. Testing your bot: Use the whole conversation process as an end-to-end testing case.
Professional teams should not publish products without proper testing. When a
product is launched, there should be dozens of key end-to-end testing cases to cover
the key dialogue paths. Continuous integration (CI) and continuous deployment
(CD) can help you to make the process easy and reliable.

5. Tracking progress: We need to define some methods from the business context to
determine whether the chatbot dialogue has completed the work. For example, this
can be judged by whether the user performed some specific operations (such as a
purchase operation during shopping) or did not perform some specific operations
(such as no customer service request after 24 hours).

Introduction to Rasa X 203

6. Fixing problems: We should study the successful conversations along with the failed
conversations. Successful conversations can immediately be used as testing cases.
In comparison, failed conversations could reveal that we might need more training
data or that there are bugs in the code. By tracking how a chatbot fails, we should be
able to gradually understand the root cause and fix the bugs.

CDD is not a linear process like the waterfall model. Developers jump between each of
these steps. Over time, CDD can discover the real user's needs and make bots more and
more adaptable to them.

In the next section, we will introduce Rasa X, which is a tool that implements CDD.

Introduction to Rasa X
Rasa X is a toolset for CDD and was developed by the Rasa team.

The license terms of Rasa X
Rasa X, as mentioned in this book, refers to Rasa X Community Edition.
Rasa X is a free, closed source tool that is available to all developers. The use
of Rasa X requires you to accept its license terms: https://storage.
googleapis.com/rasa-x-releases/rasa_x_ce_license_
agreement.pdf. Rasa X Community Edition is free for non-commercial
use. It is also free for commercial use, as long as you don't provide it as a
service (Software as a Service) to others. For more details please refer to the
official license.

Installing Rasa X
Rasa X is a tool for production environments, so the official documentation (https://
rasa.com/docs/rasa-x/installation-and-setup/installation-guide)
offers many installation methods (such as local installation, Helm Chart installation,
and Docker Compose installation). In this chapter, we will only introduce one of the
installation modes that developers often use, that is, local installation.

You can install Rasa X in local mode by using the following command (in Command
Prompt or Terminal):

pip install rasa-x --extra-index-url https://pypi.rasa.com/
simple

Once the preceding command has successfully installed Rasa X, it will print a message on
the screen to convey that Rasa X was installed successfully.

https://storage.googleapis.com/rasa-x-releases/rasa_x_ce_license_agreement.pdf
https://storage.googleapis.com/rasa-x-releases/rasa_x_ce_license_agreement.pdf
https://storage.googleapis.com/rasa-x-releases/rasa_x_ce_license_agreement.pdf
https://rasa.com/docs/rasa-x/installation-and-setup/installation-guide
https://rasa.com/docs/rasa-x/installation-and-setup/installation-guide

204 Conversation-Driven Development and Interactive Learning

If you choose to install a Rasa X version, you should be careful to choose a version that
is compatible with your current Rasa and Rasa SDK. A compatibility matrix (https://
rasa.com/docs/rasa-x/changelog/compatibility-matrix) can help you
with this.

In the next section, we will discuss how to use it.

Using Rasa X
We will introduce the functionalities of Rasa X with the six steps of CDD (as discussed in
the Introduction to Rasa section).

Sharing your bot
There are two ways for Rasa X to distribute bots: web-link sharing and external channels.

Web-link sharing is implemented by Rasa X to generate a web link for testing users. Users
can open the link with the help of a browser and get a simple chat UI in order to interact
with the chatbot:

Figure 10.1 – Distributing a chatbot to guest testers

https://rasa.com/docs/rasa-x/changelog/compatibility-matrix
https://rasa.com/docs/rasa-x/changelog/compatibility-matrix

Introduction to Rasa X 205

Additionally, Rasa can connect to external clients through channels, which we introduced
in Chapter 3, Rasa Core. Developers can link Rasa to an external client through a channel,
and users can directly use the third-party client to interact with
the chatbot.

No matter which distribution method we use, Rasa X will be able to record and store a
complete dialogue history.

Reviewing conversations
The collected conversation history is stored on the Conversations page within Rasa X.
Developers can filter, review, and tag conversations on the Conversations page. These
operations are done on the user interface via the mouse and keyboard, which is very
intuitive. You can view an example of the Conversations page as follows:

Figure 10.2 – Reviewing conversations

206 Conversation-Driven Development and Interactive Learning

Annotating NLU examples
All of the NLU information during a conversation is recorded on the NLU Inbox page
within Rasa X. Developers can mark the sentence as correct if the NLU results are right,
and if not, developers can correct the records and save them for the purposes of further
training. These operations can be carried out through the user interface, as follows:

Figure 10.3 – Checking and labeling NLU examples

Testing your bot
All of the conversations are recorded to corresponding end-to-end stories. Developers can
choose to save them as end-to-end testing cases. Rasa X will save the story to the directory
of tests. Then, developers can run the rasa test command to use this end-to-end case
to test trained models. These operations can be done through the user interface, as shown
in Figure 10.3.

Notice that in Rasa X, saving a conversation to a story requires your Rasa X to be
connected to a remote Git repository. However, local mode does not support integrated
version control. Instead, you can simply copy the test story content (as shown on the
right-hand side of Figure 10.3) and paste it into your test story file:

Introduction to Rasa X 207

Figure 10.4 – Generating a test story file for a conversation

Tracking progress
Developers need to think about a solution that tracks whether the bot conversations
actually address the user's questions. Let's take the example of sales. If the user clicks
on the link provided by the chatbot to buy something, the given link should contain
the dialogue ID. When the shopping action is done online, a callback link should let
the chatbot know that this conversation is successful from both a technical sense and a
business sense.

Rasa offers a web-based API to support this. E-commerce systems can use this API to
label specific dialogues and use this label to track whether the dialogue is a success or not.
For example, you can use the curl command to label the conversation (that is, replace
{RASA_X_HOST} and {CONVERSATION_ID} with your own values):

curl --data '[{"value":" added_to_cart","color":" 228B22"}]'
http://{RASA_X_HOST}/api/conversations/{CONVERSATION_ID}/tags

208 Conversation-Driven Development and Interactive Learning

In the preceding command, we will label the conversion (as identified by the conversation
ID) to tag added_to_cart.

Rasa X also supports labeling dialogues in the backend by hand, so developers can label
the dialogue by tracking its content and process.

Fixing problems
The best way to find problems in a conversation is to review and mark them regularly,
and then use tag filtering to deal with all kinds of problems one by one. By filtering labels,
developers can find conversations that have potential issues. If the issues are caused by NLU
extraction, we can add in more training data or fine-tune the component configuration to
mitigate them. If the issues are from stories, we can use interactive learning to generate new
stories or fine-tune the policies. It is also possible that the issues are from the action server,
in which case, we need to debug them according to the situation.

So far, we have discussed the six steps of CDD in Rasa X. In the next section, we will
discuss interactive learning.

Interactive learning in Rasa
In interactive learning mode, users can directly interact with the bot and give feedback,
and then immediately correct any errors during the process. With interactive learning, we
can test our bot prototype on a large scale and easily debug it intuitively.

In Rasa, interactive learning can be done in the Rasa CLI and Rasa X. The Rasa shell is
based on the command line, while Rasa X is based on the web user interface. Although the
two manifestations are different, under the hood, they are the same interactive learning
mechanism. Since Rasa installation comes with the Rasa CLI, we will introduce interactive
learning based on the Rasa CLI.

Starting interactive learning
In order to run interactive learning, first, we need to start the Rasa action server:

1. As we have done in the previous chapters, let's start the action server using the
following command:

rasa run actions

Introduction to Rasa X 209

2. The next step is to begin interactive learning. We briefly introduced several
important commands in the Rasa commandline section of Chapter 1, Introduction
to Chatbots and Rasa the Framework. Among them is rasa interactive.
The rasa interactive command is used for interactive learning. The rasa
interactive command works similarly to rasa shell. Both start the Rasa
server in the background and then start a command line-based interactive interface
on the frontend at the same time.

3. Execute the following command in Command Prompt or Terminal to start
interactive learning:

rasa interactive

This command will load the model. When the loading is complete, it is time to
implement interactive learning, which we will discuss in the next section.

Performing interactive learning
Once the rasa interactive command has finished the model loading job, we will
enter the interactive learning mode. In this mode, Rasa will ask us to confirm the NLU
and Core prediction results after each input.

In the following subsections, we will discuss how to confirm the NLU results and the
action prediction results.

Confirming the NLU parsing result
After each input, Rasa will ask us to confirm whether the NLU parsing result is correct, as
detailed in the following steps:

1. If there is an error in the NLU parsing, whether it is an intent classification error or
an entity extraction error, it will enter the error correction step. This requires the
user to provide the correct intent classification and entity extraction results in turn.

2. After the user gives the input, Rasa will give the current prediction result (note that
this result includes intent classification and entity extraction) and ask whether it is
correct. We can choose Yes or No, as shown in the following code block:

? Your input -> What's the weather like tomorrow?

? Is the intent 'weather' correct for 'What's the weather like
[tomorrow](date-time)?' and are all entities labeled correctly?
(Y/n)

210 Conversation-Driven Development and Interactive Learning

If we choose Yes, the confirmation of the intention classification is over. However,
if we choose No, then we need to provide Rasa with the correct NLU parsing result.
There are two parts to this: providing the correct intent classification result and
providing the correct entity extraction result.

3. You can provide the correct intent classification result by selecting from the intent
list or creating a new one, as shown in the following code block:

? Your input -> What's the weather like tomorrow?

? Is the intent 'weather' correct for 'What's the weather like
[tomorrow](date-time)?' and are all entities labeled correctly?
No

? What intent is it? (Use arrow keys)

 » <create_new_intent>

 1.00 weather

 0.00 info_date

 0.00 greet

 0.00 goodbye

 0.00 info_address

After providing the correct intent classification result, Rasa will ask you to provide the
entity extraction result. You can provide the correct entity extraction results using the
format we discussed in Chapter 2, Natural Language Understanding in Rasa, as shown in
the following block:

? Your input -> What's the weather like tomorrow?

? Is the intent 'weather' correct for 'What's the weather like
[tomorrow](date-time)?' and are all entities labeled correctly?
No

? What intent is it? 1.00 weather

? Please mark the entities using [value](type) notation What's
the weather like [tomorrow](date-time)?

You should note that Rasa has already given the result of automatically parsed entity
extraction. You can edit it, as needed, by using the left and right keys to move the cursor.

In the next section, we will discuss how to confirm the action prediction result.

Introduction to Rasa X 211

Confirming the action prediction result
After the NLU parsing, the next step is to predict the next action based on the NLU
parsing results and other states, such as historical actions and slot conditions (we
discussed these in Chapter 8, Working Principles and Customization of Rasa).

In interactive learning mode, Rasa will print out the current conversation state for the user
to observe before predicting the next action. Then, Rasa will provide the current predicted
next action and ask the user to confirm whether it is correct. We can choose Y or n, as
shown in Figure 10.5:

Figure 10.5 – Rasa printing out the current conversation state and waiting for confirmation

212 Conversation-Driven Development and Interactive Learning

If we choose Y, the confirmation of the next action of this timestep is over. However, if we
choose n, then we choose the correct next action to execute by selecting it from the action
list or creating a new one, as shown in Figure 10.6:

Figure 10.6 – Selecting the next action at the timestep

Introduction to Rasa X 213

In each round of interactive learning, confirmation of the NLU analysis results and
confirmation of the multiple action prediction results are required. If you are confused
about why there are multiple actions, please visit the How does the policy inference work?
section of Chapter 8, Working Principles and Customization of Rasa.

In the next section, we will discuss how to save the data you fed back to the robot during
interactive learning into NLU training samples and stories.

Saving the interactive learning data and exiting
The feedback given to the chatbot in interactive learning is not automatically saved as a
training sample. The user is required to explicitly export these training samples. This is
very easy to do in interactive training mode. Users simply need to press Ctrl + C and select
whichever options they want. The list of options is as follows:

? Do you want to stop? (Use arrow keys)

 » Continue

 Undo Last

 Fork

 Start Fresh

 Export & Quit

After we have selected the Export & Quit option, Rasa will ask several questions
about where to save the data. After Rasa saves the data to the relevant files, the interactive
learning command will end. The whole process is as follows:

? Do you want to stop? Export & Quit

? Export stories to (if file exists, this will append the
stories) data/stories.yml

? Export NLU data to (if file exists, this will merge learned
data with previous training examples) data/nlu.yml

? Export domain file to (if file exists, this will be
overwritten) domain.yml

Congratulations, you have made your way through this entire chapter. At this point, you
should have a deep understanding of CDD and interactive learning.

214 Conversation-Driven Development and Interactive Learning

Summary
In this chapter, we discussed CDD, which is a methodology that is used to construct
dialogue systems efficiently. We introduced a tool for CDD: Rasa X. We explained, in
detail, how to use Rasa X to complete the six steps of CDD, that is, sharing, reviewing,
annotating, testing, tracking, and fixing. Additionally, we discussed interactive learning
and demonstrated, in detail, how to use the Rasa CLI to complete interactive learning.
After studying these two topics, you should now have more confidence regarding how to
build a successful dialogue system in theory and in practice.

In the next chapter, we will discuss how to debug and optimize the dialogue system and
introduce Rasa's open source community ecosystem.

11
Debugging,

Optimization,
and Community

Ecosystem
In this chapter, we will learn how to debug a Rasa application, and how to optimize the
Rasa system for our application. We will also cover some tools within the Rasa community
ecosystem that can help developers to build chatbots.

You will learn the skills needed to efficiently debug Rasa applications, and by the end
of the chapter, you will understand the best practices that can help your Rasa system to
achieve better performance. You will also discover some excellent tools that can help to
build your chatbots.

In this chapter, we will cover the following topics:

• Debugging Rasa systems

• Optimizing Rasa systems

• Understanding the community ecosystem of Rasa

216 Debugging, Optimization, and Community Ecosystem

Debugging Rasa systems
A chatbot is a complex software system. Therefore, we need to design and configure
Rasa projects carefully. It is pretty common for developers to get different kinds of bugs
when building Rasa-based chatbots. In general, those bugs can be of two types: one is
that the prediction results are not as expected; another is that there is a code error in the
Rasa system, and the bot cannot run normally. We will cover both types of bugs in the
following subsections.

Wrong prediction of results
Two problems may cause the wrong prediction of results. It can be that the Natural
Language Understanding (NLU) module makes the wrong prediction on user intent
and entities, or it can be that a policy makes the wrong prediction on the next action. It is
crucial to first make sure which of these problems is causing the wrong predictions.

Fortunately, most of the commands in Rasa have the debug function. Developers can turn
on the debugging option to obtain critical internal information from Rasa in real time to
help debug the system. When we get wrong prediction results, it is recommended to use
the built-in rasa shell command with the -vv flag added to it (that is, rasa shell
-vv) to turn on debug mode. In the following subsections, we will discuss how to spot
NLU parsing errors and action prediction errors.

Finding NLU parsing errors
After a user types an input, the Rasa shell in debug mode will give a detailed NLU parsing
result in a log, as shown in the following example:

Your input -> weather in Shanghai

DEBUG rasa.core.processor - Received user message 'weather
in Shanghai' with intent '{'id': -8721386961924253444, 'name':
'weather', 'confidence': 0.9982607960700989}' and entities
'[{'entity': 'address', 'start': 11, 'end': 19, 'confidence_
entity': 0.9993818998336792, 'value': 'Shanghai', 'extractor':
'DIETClassifier'}]'

Debugging Rasa systems 217

In this example, the key pieces of information are intent '{'id':
-8721386961924253444, 'name': 'weather', 'confidence':
0.9982607960700989}' and entities '[{'entity':
'address', 'start': 11, 'end': 19, 'confidence_entity':
0.9993818998336792, 'value': 'Shanghai', 'extractor':
'DIETClassifier'}]'. The former gives intent information, and the latter gives
entity information. With this information, you can determine whether there is an error in
the NLU parsing.

Finding action prediction errors
After NLU parsing, it is time for Rasa to make action predictions. As we have already
discussed in Chapter 8, Working Principles and Customization of Rasa, there are many
variables (such as NLU analysis results, slot status, dialogue history, and so on) that affect
the results of action prediction. Therefore, this information will be printed out by the Rasa
shell in debug mode (below the log about the NLU parsing result). This can be seen in the
following example:

DEBUG rasa.core.processor - Current slot values:

 address: None

 date-time: None

 requested_slot: None

 session_started_metadata: None

DEBUG rasa.core.policies.memoization - Current tracker
state:

[state 1] user intent: weather | user entities: ('address',) |
previous action name: action_listen

DEBUG rasa.core.policies.memoization - There is no
memorized next action

DEBUG rasa.core.policies.ted_policy - TED predicted 'utter_
greet' based on user intent.

The critical information in the example log is the Current slot values value
and the Current tracker state value. It also prints out the policy status. There
is no memorized next action, and the TED policy gives the action prediction result
utter_greet.

With this information, you can determine whether there is an error in the action
prediction.

218 Debugging, Optimization, and Community Ecosystem

Code errors
There can be cases where there is an error in the code, and the system throws an exception
and stops running. We will then need to debug the Python source code to track the bugs.

In general, there are two options for debugging Python code. One way is to use the
built-in Python pdb module, the official solution for Python programs. Although it has a
steep learning curve, this method does not require the installation of third-party libraries,
and it has a wide range of applications and powerful functions. Therefore, it is very
suitable for senior Python developers and online production environments. Another way
to debug a Python program is to use a Graphical User Interface (GUI)-based Integrated
Development Environment (IDE). This method is intuitive and straightforward to use.
Compared with pdb, a GUI-based IDE is more friendly to ordinary developers. Therefore,
it is suitable for use in the development phase.

In this section, we will introduce these two debugging methods in more detail.

Using the pdb module to debug
The best way to use the pdb module for debugging is to automatically enter the post-
mortem debugging mode when an error occurs. Post-mortem debugging is the debugging
of the program after it has already crashed. It allows you to quickly find the most direct
cause of the error and view the entire call stack at the time of the crash. Let's have a look at
this in the following steps:

1. The following is an example of post-mortem debugging using the pdb command
(executed in the Command Prompt or terminal):

python -m pdb -c continue -m rasa train

The rasa train part of this command is the Rasa command you want to debug.

Unfortunately, the preceding command is only available in Python 3.7 and later
versions (the -m option is newly introduced to the pdb module in Python 3.7).
For users of Python before 3.7, you can use the following method instead. The
alternative is to directly find the location of the program entry module and enable
the pdb debugging function by calling the source code. The entry module for all the
Rasa commands is the rasa.__main__ module.

2. You can find the file location of the rasa.__main__ module by executing the
following Python code in the Python interpreter:

>>> from rasa import __main__; print(__main__.__file__)

<XXX>/rasa/__main__.py

Debugging Rasa systems 219

The preceding command successfully outputs the file location of the Rasa entry
module, which is <XXX>/rasa/__main__.py (where the <XXX> part represents
the omitted path prefix).

3. Once you have the file path of the entry module, you can use the following
command (executed in the command prompt or terminal) to implement post-
mortem debugging:

python -m pdb -c continue <XXX>/rasa/__main__.py train

In the preceding command, <XXX>/rasa/__main__.py is the file path of the
Rasa command-line entry module, and the train part is the Rasa subcommand
we want to execute. In terms of effect, this command is entirely equivalent to
the debugging command we have introduced before. The disadvantage of this
command is obvious in that it is relatively cumbersome, and the advantage is that it
can be used in any Python version.

4. No matter which method you use to start pdb debugging, you will enter the pdb
debugger after an error occurs in the operation of the Rasa command, as shown in
the following:

Uncaught exception. Entering post mortem debugging

Running 'cont' or 'step' will restart the program

> /<XXX>/Chapter11/customed/tokenizer.py(12)tokenize()

-> raise ValueError("This is an on purpose exception")

(Pdb) <!-- Cursor is blinking here -->

In the preceding interface, the pdb debugger is waiting for your input.

In the pdb debugger, you need to operate the debugger through commands to
observe the current program status, control program execution, switch context, or
perform another action. Here, we give an example of operating the pdb debugger:

> /<XXX>/Chapter11/customed/tokenizer.py(12)tokenize()

-> raise ValueError("This is an on purpose exception")

(Pdb) longlist <!-- type your pdb command here -->

 8 def tokenize(self, message, attribute):

 9 text = message.get(attribute)

 10

 11 # raise exception on purpose

 12 -> raise ValueError("This is an on purpose
exception")

220 Debugging, Optimization, and Community Ecosystem

 13

 14 words = text.split()

 15

 16 tokens = self._convert_words_to_tokens(words,
text)

 17

 18 return self._apply_token_pattern(tokens)

(Pdb) <!-- Cursor is blinking here -->

In the preceding example, we used the longlist command to print the code of
the currently executing function. The line of code currently being executed has been
marked in the output with -> on its left side. In order to highlight this in the code
block, the text of this line has been underlined (in the real output, the text is not
underlined).

5. We list the commonly used pdb debugging commands for you here:

Figure 11.1 – Commonly used pdb commands

If you want to know more debugging commands, or learn more about using the pdb
module, please go through the official documentation (https://docs.python.
org/3/library/pdb.html).

https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html

Debugging Rasa systems 221

Using an IDE to debug
Another way of debugging Python is to use a GUI-based IDE. In this example, we will
work with the most commonly used Python IDE tool, PyCharm (https://www.
jetbrains.com/pycharm/), to show the configuration method for debugging Rasa
applications:

1. Let's begin with opening the Run/Debug Configurations interface.
2. Select Run > Edit Configures.
3. Click the + button in the upper-right corner, and select Python in the list that

appears.

We will get the following configuration interface:

Figure 11.2 – Run/Debug Configurations interface for Python

https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

222 Debugging, Optimization, and Community Ecosystem

Like using pdb, there are also two debugging options for an IDE. The first is module-
based, and the second is file-based.

First, we will discuss the module-based approach. To do this, we need to make four
changes to the default configuration shown in Figure 11.2:

1. First, we need to choose Module name as the running method. To open the
selection list, click to the right of Script path: and select Module name.

2. Next, Module name is set to be rasa.
3. Next, Parameters should be set as the Rasa subcommand and parameters we need.

In the command line, all of the Rasa command strings except for rasa are the
parameters. For example, in the rasa train command, train is the parameter.

4. Finally, Working directory should be set as the rasa project path.

The following figure is an example of a complete module-based configuration:

Figure 11.3 – A complete module-based Rasa debugging configuration

Debugging Rasa systems 223

Another way to debug Rasa applications through an IDE is file-based. To do this, we need
to make four changes to the default configuration shown in Figure 11.2:

1. First, we need to choose Script path as the running method, which is the default
value. If it is not, click to the right of Module name: to open the selection list
and select Script path.

2. Next, Script path is set to the file path of the entry module (rasa.__main__).
We already discussed how to get the file path in the Using the pdb module to debug
section.

3. Next, Parameters should be set as the Rasa subcommand and parameters we need.
The settings for this part are the same as in the module-based debugging.

4. Finally, Working directory should be set as the rasa project path. The settings of
this part are also completely consistent with module-based debugging.

The following figure is an example of a complete file-based configuration:

Figure 11.4 – A complete file-based Rasa debugging configuration

224 Debugging, Optimization, and Community Ecosystem

After this, we can use PyCharm to debug Rasa projects with breakpoints and the
debugging dashboard.

Optimizing Rasa systems
For intent classification and entity extraction components based on machine learning,
the learning rate and epoch settings are very important for the performance of this
component. We can determine the adjustment direction (increase or decrease) of the
learning rate and epoch by observing the loss curve.

In this example, we take the commonly used component in Rasa, DIETClassifier, as
a way to illustrate how to adjust the settings to use TensorBoard, to visualize training and
validation metrics. Here is an example of our Rasa configuration:

version: "2.0"

language: en

pipeline:

 - name: WhitespaceTokenizer

 - name: LanguageModelFeaturizer

 model_name: "bert"

 model_weights: "rasa/LaBSE"

 - name: RegexFeaturizer

 - name: DIETClassifier

 epochs: 100

 learning_rate: 0.001

 tensorboard_log_directory: ./log

policies:

 - name: MemoizationPolicy

 - name: TEDPolicy

 epochs: 100

 - name: RulePolicy

In the preceding example, we set the component to record the metrics changes during the
training process to the specified directory (that is, ./log). After that, we use the rasa
train command to train the model as usual. During and after training, we can observe
the changes of these indicators through TensorBoard. You can start TensorBoard with the
following command (in the Command Prompt or terminal):

tensorboard --logdir=./log

Optimizing Rasa systems 225

After the preceding command runs, users can access TensorBoard to observe the
changes of various indicators by visiting http://localhost:6006/, as shown in
the following figure:

Figure 11.5 – Examining loss using TensorBoard

If the learning rate of the component is set too low, the weights in the network are updated
very slightly at each step, so the training progress will be very slow (that is, the loss will
decrease very slowly). However, if the learning rate is set too high, it may cause the strange
behavior that the loss value continues to increase. You can use TensorBoard to check the
loss to decide whether the current learning rate setting is reasonable, and if not, how to
adjust it.

Let's discuss the epoch settings. If the epoch is set too low, the number of training
iterations is too small, and the model is not fully trained (that is, the loss has not dropped
to the lowest), so the model performs poorly. However, if the epoch is set too high, after
the model finds the (local) optimal solution (that is, the loss has dropped to the lowest
value and cannot continue to decrease), more training time will not be able to find a better
solution, so more big epochs would be just a waste of time.

226 Debugging, Optimization, and Community Ecosystem

Understanding the community ecosystem of
Rasa
Rasa only offers core infrastructure and does not offer additional tools to help developers
build bots. Rasa focuses on solutions for NLU and dialogue management, however, to create
a complete chatbot, we also need to work on data collection, data generation, data labeling,
and so on. We can do this by writing scripts, but this is not friendly to developers.

There are some open source projects in the developer community that can help and may
act as additional tools to work together with Rasa to build chatbots. We introduce some of
those tools in the following subsections.

Data generation tool – Chatito
Chatito is a data generation tool that helps developers to generate data with the simple
format of a Domain-Specific Language (DSL). A DSL is a computer language specially
designed for a particular application domain. Using a DSL has many advantages, such
as being much more expressive in their domain than general-purpose programming
languages. Developers can use Chatito to rapidly generate training and testing data
for natural language processing tasks such as Named Entity Recognition (NER), text
classification, intent recognition, and so on.

A Chatito project consists of the following parts:

• An IDE for online editing

• A set of DSL protocols for natural language processing

• A DSL parser in pegjs format

• A generator implemented in TypeScript and the NPM package

The online editing IDE of Chatito is quite mature and supports grammar check and
keyword highlighting, as shown here:

 Figure 11.6 – Online IDE of Chatito

Understanding the community ecosystem of Rasa 227

Chatito has a native adapter for Rasa that can generate NLU data in a compatible format.
For more information about Chatito's DSL syntax and usage, please visit the GitHub
repository: https://github.com/rodrigopivi/Chatito.

Data generation tool – Chatette
Chatette (https://github.com/SimGus/Chatette) is a tool similar to Chatito.
It uses a DSL to generate data. The DSL used by Chatette is a superset and extension of
Chatito's DSL. This means we can directly use Chatito templates in Chatette.

The main differences between Chatette and Chatito are as follows:

• Chatito is implemented in JavaScript, while Chatette is in Python.

• Chatito has multiple adapters that support different dialogue frameworks, while
Chatette only supports Rasa.

• Chatette supports large-scale projects by allowing multiple file inputs, for instance.

In the following figure, we show an example of generating data from a Chatette
DSL template:

Figure 11.7 – From a Chatette DSL template to a dataset

In the preceding figure, the left side is the DSL template, and the right side is the NLU
dataset generated by this template.

In this section, we showed you the powerful features of Chatette. For more information on
Chatette's DSL syntax and usage, please visit the official Wiki (https://github.com/
SimGus/Chatette/wiki).

https://github.com/rodrigopivi/Chatito
https://github.com/SimGus/Chatette
https://github.com/SimGus/Chatette/wiki
https://github.com/SimGus/Chatette/wiki

228 Debugging, Optimization, and Community Ecosystem

Data labeling tool – Doccano
Doccano (https://github.com/doccano/doccano) is an open source,
web-based, text labeling tool with a user-friendly and intuitive UI. It supports labeling for
text classification, sequence labeling, and seq-to-seq labeling.

Some of Doccano's main features are as follows:

• Support for multi-user collaboration in labeling

• Support for multiple languages

• Support for labeling in mobile devices

• Support for emojis

• Support for dark mode UI

• Support for RESTful API

In the following figure, we show Doccano's named entity annotation function:

 Figure 11.7 – The named entity annotation function of Doccano

https://github.com/doccano/doccano

Understanding the community ecosystem of Rasa 229

From the preceding figure, we can see that Doccano's UI is professional and intuitive:
different entities are distinguished by different colors, and it also supports shortcut keys (a
single letter next to the entity name) to improve efficiency.

Next, we will show Doccano's text classification function, which can be used for
intent classification:

 Figure 11.8 – The text classification function of Doccano

In this section, we showed you the rich features of Doccano. For detailed tutorials and
documents on how to use Doccano, please visit https://doccano.github.io/
doccano/.

Language-specific libraries
Although Rasa is a language-neutral framework, many components are language-specific
or only support some languages. Rasa's support for different languages is not exactly the
same. Developers from different parts of the world have contributed to building language-
specific libraries to allow Rasa to better support their own languages.

https://doccano.github.io/doccano/
https://doccano.github.io/doccano/

230 Debugging, Optimization, and Community Ecosystem

One example is the rasa_chinese library (https://github.com/howl-anderson/
rasa_chinese). It takes advantage of the flexibility of Rasa and adds components
that specialize in processing Chinese (such as Chinese word segmentation, pre-training
models, and so on). In addition to this, rasa_chinese supports connection to some
well-known Chinese instant messaging applications, such as WeChat.

Summary
In this chapter, you learned how to debug a Rasa system and to optimize the performance of
Rasa. You also learned about some excellent tools from the community that can help you.

When discussing how to debug a Rasa system, we introduced how to use the debugging
information of the Rasa shell to deal with the problem of incorrect results run by Rasa. We
then introduced how to use the pdb module and the IDE's debugging function to debug
code errors.

When discussing how to optimize the performance of Rasa, we introduced how to use
TensorBoard to observe the changes in metrics to determine how to adjust the learning
rate and epoch settings.

Finally, we introduced you to some excellent tools from the Rasa community. By using
these tools, your work efficiency can be greatly improved.

This is the last chapter of the book, so let's quickly review its main sections.

We started with an introduction to the architecture and underlying principles of the Rasa
framework. Then we learned, in detail, how to quickly build various chat robots, such as
task-based, FAQ, knowledge graph chat robots, and more. Finally, we gained knowledge
about the best practices to adopt in the debugging and optimization of Rasa.

We hope that you got a lot out of this book. If you worked all the way through it, which is
not easy, you should now consider yourself an expert in Rasa. All we can say is thank you
very much for reading!

https://github.com/howl-anderson/rasa_chinese
https://github.com/howl-anderson/rasa_chinese

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
http://www.packt.com

232 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Getting Started with Google BERT

Sudharsan Ravichandiran

ISBN: 978-1-83882-159-3

• Understand the transformer model from the ground up

• Find out how BERT works and pre-train it using masked language model (MLM) and next
sentence prediction (NSP) tasks

• Get hands-on with BERT by learning to generate contextual word and sentence embeddings

• Fine-tune BERT for downstream tasks

• Get to grips with ALBERT, RoBERTa, ELECTRA, and SpanBERT models

• Get the hang of the BERT models based on knowledge distillation

• Understand cross-lingual models such as XLM and XLM-R

https://www.packtpub.com/product/getting-started-with-google-bert/9781838821593

Other Books You May Enjoy 233

Mastering spaCy

Duygu Altinok

ISBN: 978-1-80056-335-3

• Install spaCy, get started easily, and write your first Python script

• Understand core linguistic operations of spaCy

• Discover how to combine rule-based components with spaCy statistical models

• Become well-versed with named entity and keyword extraction

• Build your own ML pipelines using spaCy

• Apply all the knowledge you've gained to design a chatbot using spaCy

https://www.packtpub.com/product/mastering-spacy/9781800563353

234

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share your thoughts
Now you've finished Conversational AI with Rasa, we'd love to hear your thoughts! If you
purchased the book from Amazon, please https://packt.link/r/1801077053 for
this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801077053

Index

A
action prediction errors

finding 217
action_query_date action 92
ActionQueryKnowledgeBase

attribute of object, expressing 138
modifying, to customize

the behavior 138
object list, expressing 138

action_query_time action 91, 92
action_query_weekday action 93
actions

about 64
built-in actions 73
custom actions 73
form actions 72
response actions 72
triggering, with built-in intents 102
triggering, with custom intents 102

action server
about 79
high-performance settings 200
running 94

AI Markup Language (AIML) 17
aliases

storing 35

Amazon Simple Storage Service (S3) 197
Amazon Web Services (AWS) 199
any slot 76
application programming

interface (API) 17, 64
artificial intelligence (AI) 4
Artificial Linguistic Internet Computer

Entity (Alicebot) 17
attention mechanisms 14
attributes of object type

get attributes of object(),
overriding to obtain 155

automatic slot filling 76
Automatic Speech Recognition

(ASR) 15, 18
automatic tracking events 83
auxiliary features

checkpoints 70, 71
OR statements 71

B
bag-of-words (BoW) model 9, 11
Bidirectional Encoder Representations

from Transformers (BERT) 14
Bidirectional LSTM (BiLSTM) 15

236

binary classification task 6
booking bot

building 163
features 163

booking bot, implementation
about 164
domain, configuring 166
form action, creating 167, 168
inferences, creating 169, 170
model, training 169, 170
NLU training data, creating 164
pipelines and polices, configuring 167
server, initiating 169, 170
story data and rules, creating 165

bool slot 75
built-in actions 73
built-in intents

used, for triggering actions 102
built-in policies

AugmentedMemoizationPolicy 77
MemoizationPolicy 77
RulePolicy 78
TEDPolicy 77

C
category slot 75
CDD

about 202
bot, sharing 204, 205
bot, testing 206
conversations, reviewing 205
NLU examples, annotating 206
problems, fixing 208
progress, tracking 207, 208
steps 202, 203

channels
using, to communicate with instant

messaging software 84
chatbot

about 16, 62
actions 64
building 18
decision-maker 76
entities 63
intents 63
memory 74
responses 64-66
sessions 66
slots 64
using, advantages 17

chatbot architecture 17
chatbot, building

modules 18
Chatette

about 227
reference link 227

Chatito
about 226
online IDE 227
project, parts 226
versus, Chatette 227

Chatroom
URL 84

checkpoints 70, 71
classification task 6
cloud-based model storage

about 197
configuring 197, 198
dependencies, installing 197
using 198

code errors 218

 237

command line
models, testing from 52

community ecosystem
of Rasa 226

compatibility matrix
reference link 204

Conditional Random Fields (CRF) 15
confusion matrix

about 7
performance metrics 8

Continuous BoW (CBOW) 12
continuous deployment (CD) 202
continuous integration (CI) 202
convolutional neural networks (CNNs) 21
cross-origin resource sharing (CORS) 113
custom actions

about 73
building, with Rasa SDK 80
running 83
writing 80, 81

custom intents
used, for triggering actions 102

custom knowledge base
building 140

custom knowledge base action
creating 131

D
data

validating 190
data generation tools

Chatette 227
Chatito 226, 227

data labeling tool
Doccano 228, 229

dataset
splitting 191

data, training for dialogue
management (stories)

about 67, 68
auxiliary features 70
bot actions 69
data augmentation 72
events 69
user messages 68

deep learning (DL) model 13
deep neural networks (DNNs) 13
Dialogue Management (DM) 15, 23
dialogue action 61
dialogue management models

evaluating 195
dialogue management performance

evaluating 194
dialogue management system 61
dialogue policy 61
dialogue result output 61
dialogue state tracking 61
Doccano

about 228
features 228
named entity annotation function 228
reference link 228, 229
text classification function 229

domain 62
Domain-Specific Language (DSL) 226
Dual Intent Entity Transformer (DIET) 44

E
Embeddings from Language

Models (ELMo) 13
endpoints

about 79
action server 79
event broker 79

238

lock store 79
models server 79
NLG server 79
tracker store 79
used, for connecting with services 79

end-to-end (E2E) task 24
English tokenizer

creating 183-185
entities 63
entities field 47, 49
entity extractor component 42
entity groups

component 163
forms and stories, updating 161, 162
need for 158
Rasa, configuring 161
setting, updating 161
using, to divide entities 160

entity recognition (ER) 12
entity roles

component 163
forms and stories, updating 161-163
need for 158
Rasa, configuring 161
setting, updating 161
using, to distinguish semantics roles 159

epochs 9
event broker 79
event objects 82

F
fallback

about 100
handling, in NLU 100, 101
handling, in policy 101

false negative (FN) 8
false positive (FP) 8

FAQ bot
building 118
client, using to make inferences 124
domain, configuring 122
features 119
implementing 120
models, training 124
NLU training data, creating 120, 121
pipelines, configuring 123
policies, configuring 123
Rasa server, running 124
rules, creating for response

users' questions 121
story data, creating 121

featurizer 76
featurizer components 41
file-based configuration

changes, making 223
float slot 75
form

activating 104
defining 103
using, to complete tasks 103

form actions 72
form task

executing 105
frequently asked questions

handling, with response
selector component 44

G
generalization 10
Generative Pre-trained

Transformer (GPT) 14
get attributes of object()

overriding, to obtain attributes
of object type 155

 239

get object()
overriding, to query object

from Neo4J 154
get objects()

overriding, to query objects
list from Neo4J 153

Google Cloud Storage (GCS) 197
GPT3 24
Graphical User Interface (GUI)-

based Integrated Development
Environment (IDE) 218

H
hidden Markov model (HMM) 21
HTTP-based model storage 197
HyperText Transfer Protocol (HTTP) 26

I
IEPY

about 11
classification models 12

InMemoryKnowledgeBase
customizing 139
key attribute of object, modifying 139
mapping, modifying from

mention to object 140
object representation to user,

modifying 139
input and output (I/O) 6
instant messaging (IM) apps 26, 84
Instant Messaging systems (IMs) 180
Integrated Development

Environment (IDE)
using, to debug 221, 222

intent classifier component 43
intent field 34-48

intents 63
intents trigger actions

making 101
interactive learning 208

action prediction result,
confirming 211-213

NLU parsing result, confirming 209, 210
performing 209
starting 208

interactive learning command
ending 213

interactive learning data
saving 213

K
knowledge base

creating 130, 131
knowledge base actions

about 129
attributes of objects, querying 134
considerations 129
customizing 137
need for 128, 129
objects, querying 134
reference resolution, performing 135
working 134

knowledge-based music query chatbot
building 141
domain, configuring 145, 146
features 141-143
implementing 143
inferences, making 151
knowledge base action, creating 149
knowledge base action, customizing 150
knowledge base data, creating 147, 148
model, training 151
NLU training data, creating 144

240

pipelines, configuring 147
policies, configuring 147
server, starting 151
story data, creating 145

L
language 45
language configuration 45
language model component 40
language-specific libraries 229
learning rate 9
list slot 76
lock stores

about 79, 199
InMemoryLockStore 199
RedisLockStore 200

long short-term memory (LSTM) 13
lookup field

about 36
using 38

lookup table 36
loop event 69

M
machine learning

about 4
software development 5
software usage 5
supervised learning (SL) 5
transfer learning (TL) 10

machine learning, stages
evaluation stage 7
inference stage 7
training stage 7

medical domain chatbot
building 54

domain, configuring 56
features 54
implementing 55
inferences, making 57, 58
model server, setting up 57, 58
NLU models, training 57
NLU training data, creating 55
pipeline, configuring 56, 57

MemoizationPolicy 77
Microsoft Azure Storage 197
minimum viable product (MVP) 196
ML models, error types

overfitting 10
underfitting 9

models
about 5
testing, from command line 52
training 51

models server 79
model storage

about 196
cloud-based model storage 197
HTTP-based model storage 197

module-based configuration
changes, making 222

multi-class classification task 6

N
Named Entity Extraction 39
Named Entity Recognition (NER) 15, 226
Natural Language Generation

(NLG) 18, 24, 64, 114
Natural Language Processing (NLP)

about 10
evolution 11
tasks 15

 241

Natural Language Understanding
(NLU) 15, 19, 21, 63, 129, 216

Neo4j
get object(), overriding to

query object from 154
get objects(), overriding to query

objects list from 153
Neo4j knowledge base

about 152
URL 152

NLG server 79
NLU data

defining, to perform queries
from users 132

entity, types 132, 133
NLU fallback 100, 101
NLU models

evaluating 191-193
NLU parsing errors

finding 216, 217
NLU performance

evaluating 190
NLU samples

storing 34
NLU server 79
NLU training data

format 32, 33

O
ordinal mention mapping 140
ordinal number mapping dictionary 136
ordinal number reference 135
OR statements 71
overfitting 10

P
part-of-speech (POS) 15
pdb debugging commands 220
pdb module

using, to debug 218-220
pdb module, debugging commands

reference link 220
performance metrics 7
pipeline

about 44
configuring 44-47

policies
about 76
built-in policies 77
configuring 77

policy fallback 101
policy priority 78
PyCharm

reference link 221

R
Rasa

about 26, 27
commands 28
community ecosystem 226
configuring, to entity roles

and groups 161
data and configuration, errors 190
installing 27
need for 25
sample project, creating 29
system architecture 26

Rasa assistant
deploying, to production 196
deployment options 196

242

rasa_chinese library
reference link 230

Rasa client
running 94

Rasa extensions
custom slot types, writing 182, 183
pipeline and policy extension,

writing 180, 181
writing 180
writing, for other functionalities 183

Rasa framework
about 25
need for 25

Rasa models
training 94

Rasa NLU
configuring, via pipeline 44
output format 47
training 51

Rasa NLU, output format
entities field 49
intent field 48
other fields 49, 50

Rasa NLU pipeline
about 38
features 39

Rasa NLU pipeline, components
entity extractor component 39, 42
featurizer component 39, 41
intent classifier component 39, 43, 44
language model component 39, 40
structure output 39
tokenizer component 39-41

Rasa policies
inference, working 179
tracker, conversion to training data 175
training data, working 179
working 175

Rasa project
building 27
testing 190

Rasa SDK
custom actions, building 80

Rasa SDK package
installing 80

Rasa server
high-performance settings 200
running 94
starting, to provide service 53, 54

Rasa shell 52
Rasa's NLU module

working 172
Rasas NLU module, inference process

about 173
initializing 174
interpreter object, initializing 173
output result, constructing 174, 175

Rasas NLU module, training process
about 172
initializing 172
output model, saving to disk 173
trainer object, initializing 172

Rasa software development
kit (Rasa SDK) 26

Rasa systems
debugging 216
optimizing 224, 225

Rasa Webchat
URL 84

Rasa X
about 203
installing 203
reference link 203
using 204

Rasa X Community Edition
reference link 203

 243

recurrent neural network (RNN) 13
Redis

reference link 199
regex field

about 37
using 38

regression task 6
regular expressions

about 37
advantages 37
working 37

regularization rate 9
reinforcement learning (RL) 5
response actions 72
responses

about 64-66
defining 117

ResponseSelector
configuration, updating to use 118

response selector component
used, for handling frequently

asked questions 44
retrieval intents

defining 116
RulePolicy 78

S
sample domain file 62, 63
services

connecting, via endpoints 79
sessions

configuring 66, 67
slot event 69
slots

about 64, 74
any slot 76
automatic slot filling 76

bool slot 75
category slot 75
float slot 75
influences, on conversation 75
initial values, setting for 76
list slot 76
text slot 75
types 75, 76

spaCy 39
Stanford CoreNLP 39
Stanford Question Answering

Dataset (SQuAD) 24
stories

defining, to perform queries
from users 133

validating 190
Structured Query Language (SQL) 199
supervised learning (SL) algorithm 5, 6
support-vector machines (SVMs) 21
synonym field 35
synonyms

storing 35

T
TEDPolicy 77
tell-the-time bot

about 85
action_query_date action 92
action_query_time action 91, 92
action_query_weekday action 93
building 85
custom actions, writing 91
domain settings, configuring 89
endpoints, configuring 91
features, defining 85, 86
features, implementing 87
NLU training data, defining 87

244

pipeline, configuring 90
policies, configuring 90
story data, defining 88

TensorBoard 224
Term Frequency-Inverse Document

Frequency (TF-IDF) 11
test stories

writing 194, 195
text field 47
text slot 75
Text to Speech (TTS) 15, 25
tokenizer component 40, 41
tracker object

about 81
attributes 81
methods 82

tracker, Rasa policies
converting, from prior tracker

to tracker state 176, 177
converting, to prior tracker 175, 176
tracker state, converting to

tracker state feature 179
tracker state, padding 177, 178
tracker state, truncating 177, 178

tracker stores
about 79, 198
DynamoTrackerStore 199
InMemoryTrackerStore 199
MongoTrackerStore 199
reference link 199
SQLTrackerStore 199

traditional programming
software development 4
software usage 4

training data 5
transfer learning (TL)

about 10
chatbot domain 10

Transformer model 14
true negative (TN) 8
true positive (TP) 8

U
underfitting 9
unsupervised learning (UL) 5
user input

reacting to 72
user interface (UI)

about 16
advantages 16, 17

V
virtualenv

reference link 27
virtual environments

about 27
creating 27

virtualenvwrapper
reference link 27

W
weather forecast chatbot

building 105
custom action, creating 110, 111
dialogue system, running 113
domain, configuring 107
features, defining 105
implementing 106
models, training via command line 113
NLU training data, defining 106
pipeline, configuring 109
project, extending 114
rules, defining 108

 245

stories, defining 108
strategy, configuring 109
web server, setting up for

client UI 111, 112
word2vec 13
wrong prediction of results 216

Y
YAML Ain't Markup Language 33

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1:
The Rasa
Framework
	Chapter 1: Introduction to Chatbots and the Rasa Framework
	Technical requirements
	What is ML?
	Supervised learning (SL)
	Stages of machine learning
	Performance metrics
	Overfitting and underfitting
	Transfer learning (TL)

	Introduction to Natural Language Processing (NLP)
	Evolution of modern NLP
	Basic tasks of NLP

	Chatbot basics
	Is a chatbot really necessary?
	Introduction to chatbot architecture

	Introduction to the Rasa framework
	Why Rasa?
	System architecture
	Installing Rasa
	The pipeline of a Rasa project
	Rasa command line
	Creating a sample project

	Summary
	Further reading

	Chapter 2: Natural Language Understanding in Rasa
	Technical requirements
	The format of NLU training data
	The intent field – storing NLU samples
	The synonym field – storing synonyms and aliases
	The lookup field – providing extra features by using lookup tables
	The regex field – providing extra features by using regular expressions
	Using regex and lookup

	Overview of Rasa NLU components
	Language model components
	Tokenizer components
	Featurizer components
	Entity extraction components
	Intent classifier components
	Handling frequently asked questions by using a response selector

	Configuring your Rasa NLU via a pipeline
	What is a pipeline?
	Configuring a pipeline

	The output of Rasa NLU
	The intent field – the purpose of the user's utterance
	The entities field – key parameters of user's utterance
	Other possible fields

	Training and running Rasa NLU
	Training our models
	Testing models from the command line
	Starting the Rasa NLU service

	Practice – building the NLU part of a
medical bot
	What are the features of our bot?
	How can we implement our bot in Rasa?

	Summary

	Chapter 3: Rasa Core
	Technical requirements
	Understanding the universe of your bot (domain)
	Intents and entities
	Slots
	All possible actions the bot can take (actions)
	All the predefined replies to users (responses)
	Configuring sessions

	Training data for dialogue management (stories)
	User messages
	Bot actions and events
	Auxiliary features (checkpoints and OR statements)
	Data augmentation (creating longer stories automatically)

	Reacting to user input (action)
	Response actions
	Form actions
	Built-in actions
	Custom actions

	Understanding the memory of your bot (slots)
	The influences of slots on the conversation
	Slot types
	Automatic slot filling
	Setting initial values for slots

	Understanding the decision-maker of your bot (policies)
	Configuring policies
	Built-in policies
	Policy priority

	Connecting with other services via endpoints
	Building custom actions using Rasa SDK
	Installing the Rasa SDK package
	Writing custom actions
	Tracker objects (tracking the states of conversations)
	Event objects (records for changes in conversations)
	Running custom actions

	Using channels to communicate with instant messaging software
	Building a tell-the-time bot
	Defining the features that our bot should provide
	How can we implement those features?
	Training models, serving models, and making inferences

	Summary

	Section 2:
Rasa in Action
	Chapter 4: Handling Business Logic
	Technical requirements
	The fallback mechanism in Rasa
	Handling fallback in NLU
	Handling fallback in policy

	Making intents trigger actions
	Triggering actions by using built-in intents
	Triggering actions by using custom intents

	Using forms to complete tasks
	Defining a form
	Activating a form
	Executing a form task

	Practice – building a weather forecast chatbot
	Designing the features of this bot
	Implementing the bot step by step
	Training models via the command line
	Running the dialog system
	Extending this project

	Summary

	Chapter 5: Working with ResponseSelector
to Handle Chitchat and FAQs
	Technical requirements
	Defining retrieval intents – the questions users want to ask
	Defining responses – the answers to the questions
	Updating the configuration to use ResponseSelector
	Learning by doing – building an FAQ bot
	What are the features of our bot?
	How can we implement it?

	Summary

	Chapter 6: Knowledge Base Actions to Handle Question Answering
	Technical requirements
	Why do we need knowledge base actions?
	How do you use knowledge base actions?
	Creating a knowledge base
	Creating a custom knowledge base action
	Defining NLU data and stories to perform queries from users
	How do knowledge base actions work?

	How do you customize knowledge base actions?
	Modifying ActionQueryKnowledgeBase to customize the behavior
	Customizing InMemoryKnowledgeBase
	Building your own knowledge base

	Learning by doing – building a knowledge-based music query chatbot
	What are the features of our bot?
	How do we implement the bot?
	Supporting the Neo4j knowledge base

	Summary

	Chapter 7: Entity Roles and Groups for Complex Named Entity Recognition
	Technical requirements
	Why do we need entity roles and entity groups?
	Using entity roles to distinguish semantics roles in entities of the same type
	Using entity groups to divide entities into groups
	Configuring Rasa to use entity roles and groups
	Updating the entities setting for roles and groups
	Updating forms and stories for roles and groups
	Components supporting entity roles and entity groups

	Learning by doing – building a ticket and drink booking bot
	What are the features of our bot?
	How can we implement it?

	Summary

	Chapter 8: Working Principles and Customization of Rasa
	Understanding Rasa's NLU module
	How does the NLU training work?
	How does NLU inference work?

	Understanding how Rasa policies work
	Converting trackers to training data
	How does policy training work?
	How does policy inference work?

	Writing Rasa extensions
	Writing pipeline and policy extensions
	Writing custom slot types
	Writing extensions for other functionalities

	Practice – Creating your own custom English tokenizer
	Summary

	Section 3:
Best Practices
	Chapter 9: Testing and Production Deployment
	Testing Rasa projects
	Validating data and stories
	Evaluating the NLU performance
	Evaluating Dialogueue management performance

	Deploying your Rasa assistant to production
	When to deploy
	Deployment options
	Model storage
	Tracker stores
	Lock stores
	High-performance settings for Rasa servers and
action servers

	Summary

	Chapter 10: Conversation-Driven Development and Interactive Learning
	Introduction to CDD
	Introduction to Rasa X
	Installing Rasa X
	Using Rasa X
	Performing interactive learning
	Saving the interactive learning data and exiting

	Summary

	Chapter 11: Debugging, Optimization, and Community Ecosystem
	Debugging Rasa systems
	Wrong prediction of results
	Code errors

	Optimizing Rasa systems
	Understanding the community ecosystem of Rasa
	Data generation tool – Chatito
	Data generation tool – Chatette
	Data labeling tool – Doccano
	Language-specific libraries

	Summary

	About PACKT
	Other Books You May Enjoy
	Index

